
STA 250 Spring 2025 – Homework 0 Due: Never

STA 250 – Homework 0 (Self-Assessment), due: Never

Instructor: Dogyoon Song

Instructions: This assignment is solely for self-assessment and practice. It will not be collected or graded,

nor will solutions be provided. It reviews selected topics from linear algebra, vector calculus/optimization,

probability, basic learning theory, and Python coding. If any part feels especially challenging, please review

relevant resources or consult the instructor.

Problem 1. Linear Algebra

(a) A set of matrices is said to be simultaneously diagonalizable if there exists a single invertible matrix P

such that P−1MP is a diagonal matrix for every M in the set. Suppose A and B are n × n matrices.

Under what conditions can they be simultaneously diagonalized? Give a brief justification.

(b) Let A be a symmetric n× n matrix.

(i) Show that A can be diagonalized by an orthonormal basis and that all its eigenvalues are real.

(ii) If A is also positive semidefinite (PSD), prove that its eigenvalues are nonnegative.

(c) Let A and B be symmetric positive semidefinite (PSD) matrices. Is AB necessarily PSD? If yes, provide

a proof. If not, construct a counterexample and state conditions under which AB is PSD.

(d) Briefly state the definition of the SVD of an m×n matrix. How is it related to the eigen-decomposition

of a symmetric matrix? Write down the Penrose-Moore pseudoinverse of a matrix M using its SVD.

Problem 2. Vector Calculus and Optimization

(a) Let f(x) = 1
2∥Ax − y∥22, where A ∈ Rm×n and y ∈ Rm. Compute ∇xf(x) and ∇2

xf(x) explicitly in

terms of A, x, and y.

(b) Consider the function g : R2 → R defined by

g(x1, x2) = x4
1 + x4

2 − 2
(
x2
1 + x2

2

)
.

(i) Find ∇g(x1, x2) and determine all stationary points (where ∇g = 0).

(ii) Classify each stationary point as a local minimum, local maximum, or saddle point. (Hint: consider

the Hessian or another suitable test.)

(c) Let X be an n× n positive definite (PD) matrix. Define h(X) = log det(X). Show that

∂

∂X

[
log det(X)

]
=

(
X−1

)⊤
.

(You may assume X is symmetric PD, so X−1 is also symmetric.)
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(d) Consider the function u : R2 → R given by

u(x1, x2) = 4x2
1 + x2

2 − 6x1x2 + 3x2.

(i) Use the first-order necessary condition (i.e., set ∇u = 0) to find all critical points.

(ii) For each critical point, classify it as a local minimum, local maximum, or saddle point. Justify your

answer (e.g., by examining the Hessian).

(e) Use Lagrange multipliers to solve the following constrained optimization problem:

min
(x,y)∈R2

x2 + y2 subject to x+ y = 2.

(i) Set up the Lagrangian and write down the stationarity conditions.

(ii) Solve for (x, y) and the corresponding Lagrange multiplier.

(iii) Interpret the result geometrically (i.e., where on the line x+ y = 2 do we minimize x2 + y2?).

Problem 3. Probability

(a) Recall Markov’s inequality: if X is a nonnegative random variable, then for all t > 0,

Pr
(
X ≥ t

)
≤ E[X]

t

(i) Prove Markov’s inequality.

(ii) Recall Chebyshev’s inequality: if X is a random variable that has mean µ and finite variance σ2, then

for any t > 0,

Pr
(
|X − µ| ≥ t

)
≤ σ2

t2
.

Give a short derivation of Chebyshev’s inequality (for example, from Markov’s inequality).

(b) A random variable X with mean µ is σ-sub-Gaussian if for all t ∈ R,

E
[
eλ(X−µ)

]
≤ exp

(σ2 λ2

2

)
.

We refer to σ2 as the variance proxy of X.

(i) Show that for all t > 0,

Pr
(
X − µ > t

)
≤ exp

(
− t2

2σ2

)
and Pr

(
X − µ < −t

)
≤ exp

(
− t2

2σ2

)
.

(ii) Let X be supported on a bounded interval [a, b] ⊂ R. Is X necessarily sub-Gaussian? If so, provide

an upper bound on its variance proxy in terms of a and b. If not, justify briefly.

(c) Let X1, . . . , Xn be random variables where each Xi is σi-sub-Gaussian with mean µi. Define Z =∑n
i=1 Xi.

(i) Show that Z is sub-Gaussian with mean
∑n

i=1 µi. Give an upper bound on its variance proxy in terms

of σ1, . . . , σn.

(ii) Given δ ∈ (0, 1), provide an interval I (as tight as possible) such that

Pr
(
Z ∈ I

)
≥ 1− δ.

Briefly explain how you derived this bound. How would the interval differ if you did not assume

sub-Gaussianity (e.g., using only Chebyshev’s inequality)?

(iii) If the Xi are independent, can you obtain a tighter (smaller) upper bound on the variance proxy of

Z? Does this lead to a narrower interval? Explain briefly.
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Problem 4. Learning Theory Basics

Consider a regression problem with data points {(xi, yi)}ni=1 where xi ∈ Rd and yi ∈ R. Define the L2

empirical risk

R2(w) =
1

n

n∑
i=1

(
yi − ⟨w, xi⟩

)2
.

(a) Show that if X = [x1, . . . , xn]
⊤ ∈ Rn×d has full column rank (d ≤ n and rank d), the minimizer

w∗
2 ∈ argminw(R2(w)) satisfies

w∗
2 =

(
X⊤X

)−1
X⊤y.

What happens if X⊤X is not invertible (e.g., d > n or columns of X are linearly dependent)?

(b) Comment on the geometric or algebraic interpretation of the solution w∗
2 . What would it mean when

X⊤X is singular?

(c) From a learning-theoretic perspective, under what circumstances can small empirical risk (training

error) imply small true risk (test error)? Briefly discuss how model complexity and sample size affect

this relationship.

(d) Now consider a different empirical risk function (L1 empirical risk),

R1(w) =
1

n

n∑
i=1

∣∣yi − ⟨w, xi⟩
∣∣.

How can you characterize w∗
1 ∈ argminw(R2(w))? That is, what are necessary conditions for minimizing

the L1 empirical risk? Can you comment on any geometric or algebraic interpretation of w∗
1?

Problem 5. Python Coding

If you are unfamiliar with deep learning software packages, please begin with the PyTorch tutorials on the

course website. You may also use LLMs like ChatGPT for your learning purposes (e.g., to generate examples

and debug your code), but you remain responsible for any errors in your code or plots.

(a) Consider a training dataset S = {(xi, yi)}ni=1 drawn i.i.d. from the following distribution: X ∈ Rd is

sampled from an equal-weight mixture of two Gaussians, 1
2N(µ, Id)+

1
2N(−µ, Id), and y ∈ {±1} indicates

which mixture component X is from. Specifically, one can generate (xi, yi) as follows:

• y ∼ Unif{±1},

• z ∼ N(0, Id),

• x = y µ+ z.

Provide Python code to create such a dataset S given n, d, and µ. Print the shapes of X and y to

confirm correctness, and visualize a 2D projection (choose two coordinates if d > 2) color-coded by y

for an intuitive view.

(b) We consider a 2-layer neural network with parameters a ∈ Rm and W =
[
w1 · · · wm

]⊤ ∈ Rm×d:

f(x;W,a) =

m∑
j=1

aj ϕ
(
⟨wj , x⟩

)
,
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where the activation function is ReLU, ϕ(q) = max{0, q}. Provide PyTorch code (or your own Python,

though PyTorch is recommended) that instantiates a two-layer network class allowing the user to

specify the number of neurons m. (Hint: you should be using linear layers, and nn.Sequential or

nn.ModuleList can simplify building multi-layer nets.)

(c) Define the empirical risk over the training data via the margin yi · f(xi;W,a):

L̂(W,a) =
1

n

n∑
i=1

ℓ
(
yi · f(xi;W,a)

)
,

where ℓ(q) = log
(
1+ e−q

)
is the binary cross-entropy loss. Let θ = (W,a) and perform gradient descent

with fixed learning rate η:

θt+1 = θt − η∇L̂(θt),

starting from some initial θ0. Provide PyTorch code that:

(i) Trains the two-layer network (using default PyTorch initialization) with full-batch gradient descent,

logging both training loss (and optionally classification accuracy) at each iteration.

(ii) Reports the final loss and classification accuracy on a validation set.

The code should allow user-specified ntrain, nvalid, d, m, and learning rate η.

(d) Plot the training results in two different settings. In both, let µ = dα · v with α = 0.25, where v is

sampled uniformly from the unit sphere, and set η = 0.001:

(i) d = 1000, n = 100,

(ii) d = 100, n = 1000.

For each setting, generate two plots with two lines each: one plot showing training vs. validation loss,

and the other showing training vs. validation accuracy.

(e) If time permits, vary the data model parameters (d, n, α), learning rate η or hidden size m. How does

it affect training stability, speed, and final accuracy? Provide brief comments or additional plots.


