
STA 250 Spring 2025 – Homework 1 Due: Sun, April 20 at 11:59 PM

STA 250 – Homework 1, due: Sun, April 20

Instructor: Dogyoon Song

Instructions: Please feel free to collaborate with other students on your homework, but you must list
the names of any collaborators at the top of your homework assignment. All final write-ups must be done
individually, and submissions must be made via Gradescope in a single LATEX-produced PDF file. You don’t
have to submit your solutions to problems that are marked “Optional,” which are rather challenging and
will not be graded, but could be possibly interesting for your own learning.

Problem 1.

Recall the definition of Bayes predictor f∗ : X → Y satisfying for all x′ ∈ X ,

f∗(x′) = arg min
z∈Y

E
[
ℓ(z, y) | x = x′].

Compute a Bayes predictor in the following settings:

(a) Let Y = {−1, 1} and suppose the loss function ℓ is given by

ℓ(−1, −1) = ℓ(1, 1) = 0, ℓ(−1, 1) = c− > 0, ℓ(1, −1) = c+ > 0,

where c− is the cost of false negative and c+ is the cost of false positive.

(b) Let Y = R and consider ℓ(z, y) = |z − y|.

Problem 2.

In class, we discussed asymptotic guarantees for empirical risk minimization. Specifically, assuming (1) θ∗

is the unique minimizer of the population risk R(θ) and (2) ∇2R(θ∗) is positive definite, then

1.
√

n(θ̂ − θ∗) d−→ N (0, H−1GH−1)

2. n
(
R(θ̂) − R(θ∗)

) d−→ 1
2 ∥S∥2 where S ∼ N (0, H−1/2GH−1/2)

where G = Cov
(
∇ℓ(fθ∗(x), y)

)
= E

[
∇ℓ(fθ∗(x), y) · ∇ℓ(fθ∗(x), y)⊤] and H = ∇2R(θ∗).

(a) Complete the proof of Claim 1, verifying all details in each step.

(b) Prove Claim 2.

Problem 3.

(a) Let us verify some examples of sub-Gaussian random variables.
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(i) Show that a Gaussian random variable with variance σ2 is sub-Gaussian with variance proxy σ2.
(ii) Show that any bounded random variable is sub-Gaussian, and give an upper bound on its variance

proxy (as tight as possible) in terms of it support.

(b) Let X be a random variable. Prove the equivalence of the following statements:

(1) There exists K1 > 0 such that

Pr(|X| ≥ t) ≤ 2 exp
(

− t2

K2
1

)
for all t ≥ 0.

(2) There exists K2 > 0 such that (
E|X|p

)1/p ≤ K2
√

p for all p ≥ 1.

(3) There exists K3 > 0 such that

Eeλ2X2
≤ eK2

3 λ2
for all λ ∈

[
− 1

K3
, 1

K3

]
.

(4) There exists K4 > 0 such that E exp
(

X2

K2
4

)
≤ 2.

If EX = 0, then these are also equivalent to:

(5) There exists K5 > 0 such that

EeλX ≤ eK2
5 λ2

for all λ ∈ R.

(c) Prove Hoeffding’s inequality: if X1, . . . , Xn are independent random variables such that Xi ∈ [ai, bi]
almost surely for all i ∈ [n], then for any t ≥ 0,

Pr
(

n∑
i=1

(
Xi − EXi

)
≥ t

)
≤ exp

(
− 2t2∑n

i=1(ba − ai)2

)
.

(You may assume −ai = bi = σ for all i ∈ [n], if you want to simplify.)

(d) (Optional) There are also concentration inequalities for random matrices. Prove the following.

Theorem 1 (Matrix Hoeffding; [Tro12, Theorem 1.3])) Let M1, . . . , Mn ∈ Rd×d be independent
symmetric random matrices such that for all i ∈ [n], (1) E[Mi] = 0, (2) there exists Ci ⪰ 0 such that
M2

i ⪯ C2
i almost surely. Then for all t ≥ 0,

Pr
(

λmax

(
1
n

n∑
i=1

Mi

)
≥ t

)
≤ d · exp

(
− nt2

8σ2

)
where σ2 = λmax

(
1
n

n∑
i=1

C2
i

)
.

Problem 4.

(a) Let X be a nonnegative random variable with finite expectation. Show that E[X] =
∫∞

0 Pr(X ≥ t)dt.

(b) Let Y1, . . . , Yn are zero-mean random variables (not necessarily independent) that are all sub-Gaussian
with variance proxy σ2. Prove that E[maxi∈[n] Yi] ≤ σ

√
2 log n.

(c) (Optional) Let Z1, . . . , Zn are independent Gaussian random variables with mean zero and variance
σ2. Prove that E[maxi∈[n] Yi] ≥ c · σ

√
log n for some c > 0. (Hint: Sudakov’s minoration)
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Problem 5.

(a) Prove Massart’s finite lemma:

Proposition 1 (Massart’s lemma) Fix D = (z1, . . . , zn), and let GD :=
{(

g(z1), . . . , g(zn)
)

: g ∈ G
}

.
If 1

n ∥v∥2
2 ≤ B2 for all v ∈ GD, then

R̂adD(G) ≤ B

√
2 log |GD|

n
.

(b) Prove Dudley’s theorem:

Theorem 2 (Dudley’s theorem) Let G be a family of functions from Z to R and D = (z1, . . . , zn).
Then

R̂adD(G) ≤ 12
∫ ∞

0

√
2 log N(GD, ϵ, dD)

n
dϵ,

where dD(v, v′) = 1√
n

∥v − v′∥2 and N(GD, ϵ, dD) is the covering number of GD w.r.t. the metric dD.

(c) Let F = {fθ(x) = ⟨θ, φ(x)⟩, ∥θ∥1 ≤ D} and suppose that ∥φ(xi)∥∞ ≤ R almost surely. Prove that

Radn(F) = D

n
E
[
∥Φ⊤ε∥∞

]
≤ RD

√
2 log(2d)

n
.

(d) (Optional) Let p > 1 and let q be such that 1
p + 1

q = 1. Define F = {fθ(x) = ⟨θ, φ(x)⟩, ∥θ∥p ≤ D} and
suppose ∥φ(xi)∥q ≤ R almost surely. Prove that

Radn(F) = D

n
E
[
∥Φ⊤ε∥∞

]
≤ RD√

n

1√
p − 1 .

(e) (Optional) (See [Ma22, Chapter 5.3]) Consider a two-layer neural network as follows.

• Let θ = (w, U) denote the parameters of the model, where w ∈ Rm and U ∈ Rm×d with m denoting
the number of hidden units.

• Consider F = {fθ} such that fθ(x) = ⟨w, ϕ(Ux)⟩ = w⊤ϕ(Ux) where ϕ(z) = max(z, 0) is the ReLU
activation function applied element-wisely.

• Dn = {(xi, yi) ∈ Rd × R : i ∈ [n]}.

(i) Let Bw, Bu > 0, and consider

F = {fθ : ∥w∥2 ≤ Bw, ∥ui∥2 ≤ Bu, ∀i ∈ [m]}

where ui denotes the i-th row of U . Suppose that E
[
∥x∥2

2
]

≤ C2. Show that

Rad(F) ≤ 2BwBuC

√
m

n
.

(ii) Let ξ(θ) :=
∑m

j=1 |wj |∥uj∥2. Let B > 0 and consider

F = {fθ : ξ(θ) ≤ B} .

Show that if ∥xi∥2 ≤ C almost surely for all i ∈ [n], then

R̂adDn
(F) ≤ 2BC√

n
.
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Problem 6.

(a) Show that kernel k(x, x′) = (1 + x⊤x′)s corresponds to the set of all monomials
∏d

i=1 xαi
i such that∑d

i=1 αi ≤ s. What is the dimension of the resulting feature space?

(b) Let p be a probability distribution on a set X , and (φi)i∈I (with I countable) be an orthonormal basis
of the Hilbert space L2(p) of square-integrable functions. For a summable positive sequence (λi)i∈I :

(i) Show that the function k(x, x′) =
∑

i∈I λiφ(x)φi(x′) is a positive definite kernel.
(ii) Describe the associated feature space.

(c) [Bac24, Exercise 7.17]

(d) [Bac24, Exercise 7.18]
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