
STA 250 Spring 2025 – Homework 2 Due: Sun, May 4 at 11:59 PM

STA 250 – Homework 2, due: Sun, May 4

Instructor: Dogyoon Song

Instructions: Please feel free to collaborate with other students on your homework, but you must list
the names of any collaborators at the top of your homework assignment. All final write-ups must be done
individually, and submissions must be made via Gradescope in a single LATEX-produced PDF file. You don’t
have to submit your solutions to problems that are marked “Optional,” which are rather challenging and
will not be graded, but could be possibly interesting for your own learning.

Problem 1: Convexity

For each of the following functions, please address all of the following:

1. Determine whether or not the function is convex (specify its domain).

2. If it is convex, assess whether it is strongly convex and/or L-smooth (include explicit constants if
known, or explain why they do not exist).

3. Find the convex conjugate f∗, defined by

f∗(y) = sup
x∈dom f

(
⟨y, x⟩ − f(x)

)
,

and describe the effective domain of f∗.

Note: You may find relevant material e.g., in [BV04, Chapters 2 & 3].

(a) Indicator Function of a Set.
Let S ⊆ Rd (not necessarily convex) and define

IS(x) =
{

0, x ∈ S,

+∞, x /∈ S.

(b) Norms.

(i) f(x) = ∥x∥, where ∥ · ∥ is some arbitrary norm on Rd.
(ii) f(x) = 1

2 ∥x∥2, where ∥ · ∥ is again an arbitrary norm.

Hint: The dual norm ∥u∥∗ of a norm ∥ · ∥ is defined by ∥u∥∗ := sup{⟨u, x⟩ : ∥x∥ ≤ 1}.

(c) Negative Entropy (1D).
Consider f : (0,∞) → R given by

f(x) = x log x.

(If you wish, you may generalize to the vector case f(x) =
∑d
i=1 xi log xi for xi > 0.)
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(d) Maximum of Linear Functions.
Let {w1, . . . , wm} ⊂ Rd be fixed. Define

g(x) = max
1≤i≤m

⟨wi, x⟩.

(e) Log-Sum-Exp.
For x ∈ Rd, define

f(x) = log
(

d∑
i=1

exi

)
.

(f) A Huber-Like Loss.
Let δ > 0. For x ∈ R (one dimension), define

ℓδ(x) =


1
2 x

2, if |x| ≤ δ,

δ |x| − 1
2 δ

2, otherwise.

(g) (Optional) Largest Eigenvalue Function.
Consider the space Sd of d× d real symmetric matrices. Define

h(X) = λmax(X).

Assume the inner product is ⟨X,Y ⟩ = trace(X⊤Y ) and the norm is typically the Frobenius or operator
norm (please specify which you use for smoothness).

(h) (Optional) Negative Log-Det.
For X ∈ Sd such that X ≻ 0, define

f(X) = − log
(
detX

)
.

(You may assume the domain is the positive-definite cone in Sd := {X ∈ Rd×d : XT = X}.)

Problem 2: Convergence Analysis

Note: You may find relevant material in, for example, [B+15, Sections 3 & 6] or [Nes18, Chapter 2].

(a) Gradient Descent with Diminishing Step Sizes.
Let f : Rn → R be a convex and L-smooth function (but not necessarily strongly convex). Consider
gradient descent where

x(k+1) = x(k) − ηk ∇f
(
x(k)), ηk = 1

L

1
k
.

Prove that
f
(
x(k)) − f(x∗) = O

(
1
k

)
,

where x∗ is a minimizer of f . Compare this with the convergence result for a fixed step size η = 1
L ; is

there any difference in the rate or constant?

(b) Stochastic Gradient Descent (SGD).
Let f(x) = Eξ

[
ℓ(x; ξ)

]
, where each ℓ(·; ξ) is convex and L-smooth in x. Define the SGD iteration:

x(k+1) = x(k) − αk ∇ℓ
(
x(k); ξk

)
,

where {ξk} are i.i.d. samples and αk > 0 is the step size.
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(i) State a standard convergence theorem for SGD in the convex (but not strongly convex) setting,
such as

E
[
f(x̄(k)) − f(x∗)

]
≤ O

(
1√
k

)
,

where x̄(k) = 1
k

∑k
i=1 x

(i).
(ii) Outline the key steps in the proof with sufficient details.
(iii) (Optional) Complete full details of the proof outlined above.
(iv) If f is strongly convex, explain how the rate can improve to O( 1

k ).

(c) Nesterov’s Accelerated Gradient (NAG).
Finally, consider Nesterov’s accelerated gradient method for minimizing a convex and L-smooth function
f : Rn → R. Recall the update:

y(k) = x(k) + βk
(
x(k) − x(k−1)),

x(k+1) = y(k) − η∇f
(
y(k)),

where βk and η are chosen carefully (e.g. η = 1
L and βk = k−1

k+2 ).

(i) Show that if f is convex and L-smooth, then

f
(
x(k))− f

(
x∗) = O

(
1
k2

)
.

You may use a potential function argument (or partial version thereof) as in [Nes18, Chapter 2] or
[B+15, Section 3], or refer to other known proofs (e.g., Yudong Chen’s lecture notes).

(ii) Compare this O( 1
k2 ) rate to the O( 1

k ) rate of standard gradient descent. Why is the acceleration
technique so valuable in practice?

Problem 3: Duality, KKT Conditions, and Kernel Methods

(a) Quadratic Problem with Linear Constraints.
Consider the following constrained optimization problem:

min
x∈Rd

1
2 ∥x∥2

2 subject to Ax = b,

where A ∈ Rm×d and b ∈ Rm.

(i) Write down the Lagrangian L(x, λ).
(ii) Derive the KKT conditions and solve for (x∗, λ∗).
(iii) Show that x∗ is the orthogonal projection of 0 onto the affine subspace {x : Ax = b}.

(b) ℓ1-Constrained Logistic Regression.
Suppose we have training data (xi, yi) with yi ∈ {−1,+1}. Consider the primal problem

min
w∈Rd

n∑
i=1

log
(

1 + exp(− yi ⟨w, xi⟩)
)

subject to ∥w∥1 ≤ C,

for some constant C > 0. (Hence, we treat the ℓ1 norm as a hard constraint.)

(i) Form the Lagrangian by introducing a dual variable (multiplier) α ≥ 0 for the constraint ∥w∥1 ≤ C.

https://pages.cs.wisc.edu/~yudongchen/cs726_sp23/Lecture_9_10_accelerated_GD.pdf
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(ii) State the KKT conditions for (w,α), and discuss how one might solve (or partially characterize)
w∗ and α∗.

(iii) (Optional) Briefly comment on how an ℓ1-constraint often induces sparsity in w∗ and why a
dual viewpoint (or Fenchel conjugate approach) can be helpful in developing coordinate-descent or
proximal methods.

(c) Kernel Methods and the Dual.
In many machine-learning tasks (e.g., SVM classification), one considers an infinite-dimensional feature
mapping ϕ(·) into a Reproducing Kernel Hilbert Space (RKHS). A generic primal form might look like:

min
w∈ H, b∈ R

1
2 ∥w∥2

H subject to yi
〈
w, ϕ(xi)

〉
+ b ≥ 1, i = 1, . . . , n,

where H is a (potentially infinite-dimensional) Hilbert space, and xi, yi are training data with yi ∈
{−1,+1}.

(i) Write the Lagrangian for this primal problem and identify the corresponding dual variables.
(ii) Show that, in the dual problem, the dimension effectively becomes n, corresponding to the n

constraints, rather than the infinite dimensionality of H.
(iii) Explain how the kernel function k(x, x′) = ⟨ϕ(x), ϕ(x′)⟩ enters the dual, thereby enabling one to

work only with an n× n kernel matrix.
(iv) In a few sentences, discuss why this “kernel trick” is so crucial for high-dimensional or infinite-

dimensional feature spaces in machine learning.

Problem 4: Mirror Descent, Bregman Divergences, and Proximal Maps

Setup: Let ψ : X → R be a differentiable, strictly convex function on a convex domain X ⊆ Rd. We refer
to ψ as the mirror map in mirror descent. The associated Bregman divergence is defined by

Dψ(x, y) = ψ(x) − ψ(y) − ⟨∇ψ(y), x− y⟩.

(a) Properties of Bregman Divergence.

(i) Prove that Dψ(x, y) ≥ 0 for all x, y ∈ X , with equality if and only if x = y.
(ii) Show that if ψ(x) = 1

2 ∥x∥2
2, then Dψ(x, y) = 1

2 ∥x− y∥2
2. Compare Dψ(·, ·) to an ℓ2 or squared ℓ2

norm in terms of geometry.

(b) Mirror Descent Update Rule.
Consider minimizing a differentiable function f(x) over X . The mirror descent update is:

x(k+1) = arg min
z∈X

{
⟨∇f

(
x(k)), z⟩ + 1

ηk
Dψ

(
z, x(k))} .

(i) Derive this rule by linearizing f around x(k) and adding a Bregman “penalty” term Dψ(·, x(k)).
(ii) Show that if ψ(x) = 1

2 ∥x∥2
2, then the update reduces to standard gradient descent,

x(k+1) = x(k) − ηk ∇f
(
x(k)).

(c) Constrained Example (Probability Simplex).
Let X = ∆d = {x ∈ Rd : xi ≥ 0,

∑d
i=1 xi = 1} be the probability simplex, and define ψ(x) =∑d

i=1 xi log xi (the negative-entropy mirror map).
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(i) Show how the mirror descent step yields the multiplicative (exponential) weights update:

x
(k+1)
i ∝ x

(k)
i exp

(
− ηk

[
∇f
(
x(k))]

i

)
.

(ii) Provide a short example (e.g., a small online learning or 2D scenario) to illustrate how x(k) evolves
within the simplex.

(d) Additional Examples.
Choose two of the following (or propose a similar example):

• Box Constraint: X = [0, 1]d with a log-barrier mirror map ψ(x) = −
∑d
i=1 log

(
xi(1 − xi)

)
(assuming 0 < xi < 1).

• p-norm Ball: X = {x : ∥x∥p ≤ 1} for p > 1, with ψ(x) = 1
p ∥x∥pp (if differentiable at 0).

• Mahalanobis Geometry: X = Rd, ψ(x) = 1
2 x

⊤Qx where Q ≻ 0 (a positive-definite matrix).
This is often used in preconditioning or second-order methods.

• Exponential Family / Negative Log-likelihood: In a statistical setting, ψ might be related
to a log-likelihood or cumulant generating function. For instance, if X is unconstrained, one can
set ψ(x) to be the negative log-likelihood for a particular exponential family, yielding a geometry
that matches the Fisher information.

(i) Show that ψ is strictly convex and differentiable on int(X ).
(ii) Outline the mirror-descent update for a function f(x) with step size ηk.
(iii) (Optional) Explain how the choice of mirror map helps to maintain constraints implicitly (e.g., a

log barrier ensures xi ∈ (0, 1)).

(e) Basic Convergence Bound (Outline).
Here we examine how mirror descent can achieve O

( 1√
k

)
convergence for general convex f , or O

( 1
k

)
when f is also L-smooth.

(i) State a typical mirror descent convergence theorem, for instance,

f

1
k

k∑
j=1

x(j)

− f
(
x∗) ≤ O

(
1√
k

)
, (or O

(
k−1) under smoothness).

(ii) Outline the main proof ingredients: (1) Expand using Dψ and local linearization, (2) Use a tele-
scoping sum in terms of Dψ, (3) Bound the total “Bregman diameter” of X , etc.

(iii) (Optional) Complete full details of the proof outlined above.

(f) Proximal Map Interpretation.
In the Euclidean setting, the proximal map of a convex function g is

proxg(v) = arg min
x∈Rd

{
g(x) + 1

2 ∥x− v∥2
2

}
.

(i) Describe how the mirror-descent update can be viewed as a generalized “prox” step, where the
squared ℓ2 norm is replaced by Dψ(·, ·) and f is linearized rather than added in full.

(ii) If f(x) = 0 (pure feasibility), show that the mirror-descent step is the Bregman projection of a
point v onto X under ψ.

(iii) (Optional) Give a short example of a Bregman projection in negative-entropy geometry and
interpret the result.



STA 250 Spring 2025 – Homework 2 Due: Sun, May 4 at 11:59 PM

References

[B+15] Sébastien Bubeck et al. Convex optimization: Algorithms and complexity. Foundations and Trends®
in Machine Learning, 8(3-4):231–357, 2015.

[BV04] Stephen P Boyd and Lieven Vandenberghe. Convex Optimization. Cambridge University Press,
2004.

[Nes18] Yurii Nesterov. Lectures on Convex Optimization, volume 137. Springer, 2018.


