STA 250: Theoretical Foundations for Machine Learning Lecture 1: Introduction and Overview

Dogyoon Song

Spring 2025, UC Davis

Agenda

- Course overview
- Logistics
- Supervised learning¹

 $^{^1\}mathsf{Suggested}$ reading: Bach, Chapter 2 & Ma, Chapter 1

Course objectives

Goal: Fully explain how and why machine learning/deep learning work

Modest/realistic goals:

- Learn about fundamental tools and frameworks for reasoning about ML & Optimization
- Learn about what these can say about DL, and where they fall short
- Gain experience and strengthen ability to
 - critically read and assess (recent) research publications
 - identify and formulate research questions/approaches to pursue throughout the quarter

Course logistics

- Prerequisites
- Texts and resources
- Online plaforms
- Course contents & organization
- Grading criteria
- Course policies

See syllabus for details and additional information

Supervised learning

Goal: make good prediction on new, unseen future data ("test data")

Setup: We are given the following in the usual setup

- An unknown distribution μ on $\mathcal{X} \times \mathcal{Y}$
- A training sample $\mathcal{D}_n(\mu) = \{(x_1, y_1), \dots, (x_n, y_n)\}$ where $(x_i, y_i) \sim \mu$
- A loss function $\ell: \mathcal{Y} \times \mathcal{Y} \to \mathbb{R}$

Given these,

- we want to design a learning algorithm Alg : $(\mathcal{X} \times \mathcal{Y})^* \to \mathcal{Y}^{\mathcal{X}}$; Alg : $\mathcal{D}_n \mapsto f$
- we care about the population risk (=expected risk)

$$R_{\mu}(f) := \mathbb{E}_{(x,y) \sim \mu} \left[\ell(f(x), y) \right]$$

Want: Design Alg that learns from a "small" amout of data and achieves low risk

Bayes predictor and Bayes risk

For now, suppose we have access to μ

Q: What is the best *f* we can hope for?

By the law of total expectation,

$$R(f) = \mathbb{E}\left[\ell(f(x), y)\right] = \mathbb{E}\left[\mathbb{E}\left[\ell(f(x), y) \mid x\right]\right]$$

Thus, the minimizer of R(f) can be obtained by minimizing $\mathbb{E}\left[\ell(f(x),y)\mid x\right]$ pointwisely

Definition

A map $f_*: \mathcal{X} \to \mathcal{Y}$ is a *Bayes predictor* if

$$f_*(x') \in \arg\min_{z \in \mathcal{V}} \mathbb{E}\left[\ell(z,y) \mid x = x'\right], \quad \forall x' \in \mathcal{X}.$$

The Bayes risk R^* is the risk of any Bayes predictor, and is equal to

$$R^* = \mathbb{E}_{x'} \Big[\inf_{z \in \mathcal{V}} \mathbb{E} \left[\ell(z, y) \mid x = x' \right] \Big].$$

Examples of Bayes predictors and excess risk

Examples

- Regression with square loss: $f_*(x') = \mathbb{E}[y \mid x = x']$
- Classification with 0-1 loss: $f_*(x') = \arg \max_z \Pr(y = z \mid x')$

Definition

The excess risk of $f: \mathcal{X} \to \mathcal{Y}$ is $R(f) - R^*$.

Goal (formally restated): We want to find Alg such that the excess risk

$$R\left(\mathtt{Alg}(\mathcal{D}_n)\right) - R^*$$

is "small," where \mathcal{D}_n is a random training dataset. However, "small" in what sense?

Measures of performance

Suppose μ is fixed for now

• Alg is consistent in expectation (w.r.t. μ) if

$$\mathbb{E}\left[R\left(\mathtt{Alg}(\mathcal{D}_n)\right)\right]-R^* o 0\quad \text{as } n o \infty.$$

• Alg is probably approximately correctly (PAC) consistent (w.r.t. μ) if for any $\epsilon > 0$, there exists a sequence δ_n (\to 0 as $n \to \infty$) such that

$$\Pr(R(Alg(\mathcal{D}_n)) - R^* \le \epsilon) \ge 1 - \delta_n.$$

We may want consistency over a class of problems (not for a single μ , but all $\mu \in \mathcal{M}$):

• Alg is universally consistent (over \mathcal{M}) if²

$$\sup_{\mu \in \mathcal{M}} \left\{ \mathbb{E}\left[R\left(\mathtt{Alg}(\mathcal{D}_n) \right) \right] - R^* \right\} o 0 \quad \text{as } n o \infty.$$

²Be careful with the order of quantifiers in universal consistency; also, see "no free lunch theorem"

Until next lecture

- Complete the "Homework 0" for your self-assessment ASAP if you haven't yet
- Start exploring project ideas
- Suggested reading for next lecture: empirical risk minimization
 - Bach, Chapter 4
 - Ma, Chapters 2 & 4
 - For mathematical preliminaries, see also Bach, Chapter 1 & Ma, Chapter 3