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Agenda

• Course overview

• Logistics

• Supervised learning1

1Suggested reading: Bach, Chapter 2 & Ma, Chapter 1
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Course objectives

Goal: Fully explain how and why machine learning/deep learning work

Modest/realistic goals:
• Learn about fundamental tools and frameworks for reasoning about ML &

Optimization

• Learn about what these can say about DL, and where they fall short
• Gain experience and strengthen ability to

• critically read and assess (recent) research publications
• identify and formulate research questions/approaches to pursue throughout the quarter
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Course logistics

• Prerequisites

• Texts and resources

• Online plaforms

• Course contents & organization

• Grading criteria

• Course policies

See syllabus for details and additional information
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https://dogyoons.github.io/teaching/sta250/files/STA250_Spring2025_Syllabus.pdf


Supervised learning

Goal: make good prediction on new, unseen future data (“test data”)

Setup: We are given the following in the usual setup
• An unknown distribution µ on X × Y
• A training sample Dn(µ) = {(x1, y1), . . . , (xn, yn)} where (xi , yi) ∼ µ

• A loss function ℓ : Y × Y → R

Given these,
• we want to design a learning algorithm Alg : (X × Y)∗ → YX ; Alg : Dn 7→ f
• we care about the population risk (=expected risk)

Rµ(f ) := E(x ,y)∼µ

[
ℓ
(
f (x), y

)]
Want: Design Alg that learns from a “small” amout of data and achieves low risk
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Bayes predictor and Bayes risk
For now, suppose we have access to µ
Q: What is the best f we can hope for?

By the law of total expectation,
R(f ) = E [ℓ(f (x), y)] = E [E [ℓ(f (x), y) | x ]]

Thus, the minimizer of R(f ) can be obtained by minimizing E [ℓ(f (x), y) | x ] pointwisely

Definition
A map f∗ : X → Y is a Bayes predictor if

f∗(x ′) ∈ arg min
z∈Y

E
[
ℓ(z , y) | x = x ′] , ∀x ′ ∈ X .

The Bayes risk R∗ is the risk of any Bayes predictor, and is equal to

R∗ = Ex ′

[
inf
z∈Y

E
[
ℓ(z , y) | x = x ′] ]

.
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Examples of Bayes predictors and excess risk

Examples
• Regression with square loss: f∗(x ′) = E[y | x = x ′]
• Classification with 0-1 loss: f∗(x ′) = arg maxz Pr(y = z | x ′)

Definition
The excess risk of f : X → Y is R(f ) − R∗.

Goal (formally restated): We want to find Alg such that the excess risk

R (Alg(Dn)) − R∗

is “small,” where Dn is a random training dataset. However, “small” in what sense?
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Measures of performance
Suppose µ is fixed for now

• Alg is consistent in expectation (w.r.t. µ) if

E [R (Alg(Dn))] − R∗ → 0 as n → ∞.

• Alg is probably approximately correctly (PAC) consistent (w.r.t. µ) if for any ϵ > 0,
there exists a sequence δn (→ 0 as n → ∞) such that

Pr (R (Alg(Dn)) − R∗ ≤ ϵ) ≥ 1 − δn.

We may want consistency over a class of problems (not for a single µ, but all µ ∈ M):
• Alg is universally consistent (over M) if2

sup
µ∈M

{E [R (Alg(Dn))] − R∗} → 0 as n → ∞.

2Be careful with the order of quantifiers in universal consistency; also, see “no free lunch theorem”
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Until next lecture

• Complete the “Homework 0” for your self-assessment ASAP if you haven’t yet

• Start exploring project ideas

• Suggested reading for next lecture: empirical risk minimization
• Bach, Chapter 4
• Ma, Chapters 2 & 4
• For mathematical preliminaries, see also Bach, Chapter 1 & Ma, Chapter 3
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https://dogyoons.github.io/teaching/sta250/homework/STA250_Spring2025_Homework0.pdf
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