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Recap: Supervised learning

Given

® Unknown distribution pron X x Y
e A sample D, = {(x;,y;) : i € [n]} from p
® A |oss function £: Y x Y — R

We want to design Alg : D, — f such that the excess risk R(f) — R* is small

Challenge: we do not have access to p but D!

Idea: Use a sample-analogue estimator of the risk function
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Agenda

® Empirical risk minimization

® Asymptotic analysis

® Non-asymptotic analysis
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Empirical risk minimization

Empirical risk: R(f) = 137, ¢(f(x), i)

Typically, we consider a parametric family F = {fy : § € ©}, and try to find
) in R(f;
0 € arg min (fp)

We want guarantees for the excess risk R(f;) — R

Notation: From now on, | may use R(6) to denote R(fs) and R(6) for R(fs) for brevity
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Asymptotic analysis

Asymptotic guarantees

Assume that (1) 6 is the unique minimizer of R(6) and (2) V2R(6*) = 0. Then
o /n(0—0*) L N0, H1GH™)
e n(R(0) — R(67)) 2 1||S||2 where S ~ N(0, H=Y/2GH=1/2)
where G = Cov(V{(fp<(x),y)) = E[VL(fy<(x),y) - VE(fp<(x),y)"] and H = V2R(6*)

This yields an asymptotic upper bound on the excess risk: R(é) -R*<:+o0 (%)
¢ Benefits: (1) asymptotic normality with explicit distribution; (2) fast rate of O(1/n)

® Drawbacks: asymptotic...
Example: Well-specified linear regression
i 2
® G=0°H = excess risk ~ "2—:
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Proof sketch

Step 1: Taylor expansion
0=R(A) = VR(H*)+V2 (0)(0 — 0*) + O(||6 — 6%||?)
— 00"~ [V?RO")] - VRO

= V(0 —0") ~ — [V k(a*)}*l.ﬁvk(e*)

Step 2: Central limit theorem
* Recall that VR(0*) = 1 20, V(- (x:), yi)
* Due to linearity, E[VR(0*)] = VR(6*) = 0
e By CLT,
Vi(VR(E7) = VR(8")) % N (0, Cov(VL(fy:(x). 7))
® Since V2R(6*) & V2R(6*) by LLN,

V(= 6%) & V2R(0%)IN(0, G) £ N(0, H1GH™Y)
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Non-asymptotic analysis

We decompose excess risk as

R(6) — R* = (R(é) - nf R(H)) 4 ( inf R(6) - R*)

estimation error approximation error

Our main focus is to control the estimation error; we may discuss approximation error later

Uniform convergence: To this end, we will utilize a bound of the form
Pr <sup |R(0) — R(9)| < e) >1-96
(4SS,

Note that
® For a single fixed 6, this inequality might look trivial by the LLN
® However, a uniform bound is not straightforward
® Note that € = €5(©) depends on the hypothesis class ©
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From uniform convergence to generalization bound

Suppose we have uniform convergence

Then
R(0) — R(6*) = R(A) — R(0) + R(0) — R(6*) +R(6*) — R(6%)
<0 -0 minimizes R
< |R(8) — R(O)| + |R(67) — R(6")]
<2sup |R(6) — R(6)|

Now the question reduces to establishing uniform convergence (for © of interest)
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Finite hypothesis class

Suppose that (1) || < oo and (2) £(fp(x),y) € [0, B]

Then
Pr (sup |[R(0) — R(0)] > t) < > Pr(|R(6) — R(0)| > t) - union bound
0O 9cO
2
< 2|0| - exp <—ﬁ> " Hoeffding ineq

This implies that with probability at least 1 — 6,

;gg|?(9)—f\’(9)|§ B '°g(22,’7@) +Bm
N—————

overhead for uniform control

Remarks: (1) overhead for uniform control; (2) explicit bound but slow rate O(n~%/?)
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Infinite hypothesis class

Suppose that (1') © is compact and (2, 3) ¢(fy(x),y) € [0, B], and L-Lipschitz (w.r.t. )

Definition (e-net)
Let (T, d) be a metric space. Let K C T and € > 0. A subset N C S is an e-net of S if
for all x € S, there exists x’ € N such that d(x,x’) < e.
Let N be an e-net of ©. For any 0 € ©, there exists #’ € N such that
IR(8) ~ RO)| < |RO) ~ RO)| + [RO) ~ RE)| + |RE) ~ R(0)]
<2L|0 | +|R@) - RO)|
<

It follows that with probability at least 1 — 6,

sup |R(0) — R(A)| <2Le+ B log(2N(8, <)) +B ik,g (%)

PcO 2n 2n
where N(©,¢) is the covering number of © 10/10
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