STA 250: Theoretical Foundations for Machine Learning Lecture 3: Rademacher Complexity

Dogyoon Song

Spring 2025, UC Davis

Last time...

Asymptotic analysis: $R(\hat{\theta}) - R^* \leq \frac{c}{n} + o\left(\frac{1}{n}\right)$

Non-asymptotic analysis: Generalization bound via uniform convergence

- Uniform convergence: $\Pr\left(\sup_{\theta\in\Theta}|\hat{R}(\theta)-R(\theta)|\leq\epsilon\right)\geq 1-\delta$
- If $|\Theta| < \infty$ and $\ell(f_{\theta}(x), y) \in [0, B]$, then with probability at least 1δ ,

$$\sup_{\theta \in \Theta} \left| \hat{R}(\theta) - \hat{R}(\theta) \right| \leq \underbrace{B\sqrt{\frac{\log(2|\Theta|)}{2n}}}_{\text{overhead for uniform control}} + B\sqrt{\frac{1}{2n}\log\left(\frac{1}{\delta}\right)}$$

• If Θ is compact, $\ell(f_{\theta}(x), y) \in [0, B]$, and ℓ is L-Lipschitz w.r.t. θ , then for any $\epsilon > 0$,

$$\sup_{\theta \in \Theta} \left| \hat{R}(\theta) - \hat{R}(\theta) \right| \leq 2L\epsilon + B\sqrt{\frac{\log(2N(\Theta, \epsilon))}{2n}} + B\sqrt{\frac{1}{2n}\log\left(\frac{1}{\delta}\right)}$$

Motivating question: Is the cardinality $|\Theta|$ an appropriate notion of complexity?

Agenda

- Rademacher complexity
- Generalization bound based on Rademacher complexity
- Examples

Rademacher complexity

Definition

Let $n \in \mathbb{N}$. The **Rademacher complexity** of a function class $\mathcal{G} = \{g : \mathcal{Z} \to \mathbb{R}\}$ is

$$\operatorname{Rad}_n(\mathcal{G}) := \mathbb{E}_{\varepsilon,\mathcal{D}_n} \left[\sup_{g \in \mathcal{G}} \frac{1}{n} \sum_{i=1}^n \varepsilon_i g(z_i) \right]$$

where $\varepsilon = (\varepsilon_1, \dots, \varepsilon_n)$ is a Rademacher random vector^a and $\mathcal{D}_n = \{z_1, \dots, z_n\} \sim \mu$ is an i.i.d. sample drawn from \mathcal{Z}

- aarepsilon_i being i.i.d. Rademacher random variables; $arepsilon_i=\pm 1$ with probability $rac{1}{2}$ each
- Geometric interpretation as a width \rightarrow Verify the properties in [Bac24, Exercise 4.9]
- Connection to generalization:
 - z = (x, y)
 - $g(z) = \ell(f(x), y)$

Relating Rademacher complexity to uniform deviation

Rademacher complexity yields an upper bound on uniform deviation

Symmetrization

For any
$$\mathcal{G}$$
, $\mathbb{E}\left[\sup_{g\in\mathcal{G}}\left\{\frac{1}{n}\sum_{i=1}^ng(z_i)-\mathbb{E}[g(z)]\right\}\right]\leq 2\mathrm{Rad}_n(\mathcal{G})$

Proof¹. Let $\mathcal{D}' = \{z'_1, \dots, z'_n\}$ be an independent copy of data \mathcal{D} .

$$\mathbb{E}\left[\sup_{g\in\mathcal{G}}\left\{\frac{1}{n}\sum_{i=1}^{n}g(z_{i})-\mathbb{E}[g(z)]\right\}\right] = \mathbb{E}\left[\sup_{g\in\mathcal{G}}\left\{\frac{1}{n}\sum_{i=1}^{n}\mathbb{E}\Big[g(z_{i})-g(z'_{i})\,\Big|\,\mathcal{D}_{n}\Big]\right\}\right]$$

$$\leq \mathbb{E}\left[\mathbb{E}\left[\sup_{g\in\mathcal{G}}\left\{\frac{1}{n}\sum_{i=1}^{n}\Big(g(z_{i})-g(z'_{i})\Big)\right\}\,\Big|\,\mathcal{D}_{n}\Big]\right]$$

$$=\mathbb{E}_{\mathcal{D},\mathcal{D}'}\left[\sup_{g\in\mathcal{G}}\left\{\frac{1}{n}\sum_{i=1}^{n}\Big(g(z_{i})-g(z'_{i})\Big)\right\}\right]$$

¹Similarly, we can show $\mathbb{E}\left[\sup_{g\in\mathcal{G}}\left\{\mathbb{E}[g(z)]-\frac{1}{n}\sum_{i=1}^{n}g(z_i)\right\}\right]\leq 2\mathrm{Rad}_n(\mathcal{G})$

Proof of symmetrization (cont'd)

By the symmetry in the laws of ε_i and of $g(z_i) - g(z_i')$,

$$\mathbb{E}_{\mathcal{D},\mathcal{D}'}\left[\sup_{g\in\mathcal{G}}\left\{\frac{1}{n}\sum_{i=1}^{n}\left(g(z_{i})-g(z_{i}')\right)\right\}\right] = \mathbb{E}_{\mathcal{D},\mathcal{D}',\varepsilon}\left[\sup_{g\in\mathcal{G}}\left\{\frac{1}{n}\sum_{i=1}^{n}\varepsilon_{i}\left(g(z_{i})-g(z_{i}')\right)\right\}\right]$$

$$\leq \mathbb{E}_{\mathcal{D},\varepsilon}\left[\sup_{g\in\mathcal{G}}\left\{\frac{1}{n}\sum_{i=1}^{n}\varepsilon_{i}g(z_{i})\right\}\right]$$

$$+\mathbb{E}_{\mathcal{D}',\varepsilon}\left[\sup_{g\in\mathcal{G}}\left\{\frac{1}{n}\sum_{i=1}^{n}-\varepsilon_{i}g(z_{i}')\right\}\right]$$

$$= 2\mathrm{Rad}_{n}(\mathcal{G})$$

Resulting high-probability bound

Rademacher complexity provides a control on the expectation of uniform deviation

Can we obtain high-probability bounds?

Apply concentration inequalities

If $g(z) \in [0, B]$ for all $(g, z) \in \mathcal{G} \times \mathcal{Z}$, then with probability at least $1 - \delta$,

$$\sup_{g \in \mathcal{G}} \left[\frac{1}{n} \sum_{i=1}^{n} g(z_i) - \mathbb{E}[g(z)] \right] \leq 2 \operatorname{Rad}_n(\mathcal{G}) + B \sqrt{\frac{\log(2/\delta)}{2n}}$$

Note that $\operatorname{Rad}_n(\mathcal{G})$ is averaged over all possible \mathcal{D}_n

Empirical Rademacher complexity

An empirical version can be defined, which does not take expectation with respect to \mathcal{D}_n :

$$\widehat{\mathrm{Rad}}_{\mathcal{D}_n}(\mathcal{G}) \coloneqq \mathbb{E}_{\varepsilon} \left[\sup_{g \in \mathcal{G}} \frac{1}{n} \sum_{z_i \in \mathcal{D}_n} \varepsilon_i g(z_i) \right]$$

Note that $\widehat{\mathrm{Rad}}_{\mathcal{D}_n}(\mathcal{G})$ is dependent on both function class \mathcal{G} and data \mathcal{D}_n

As the name suggests, $\mathbb{E}_{\mathcal{D}_n}[\widehat{\mathrm{Rad}}_{\mathcal{D}_n}(\mathcal{G})] = \mathrm{Rad}_n(\mathcal{G})$

If $g(z) \in [0,B]$ for all $(g,z) \in \mathcal{G} \times \mathcal{Z}$, then with probability at least $1-\delta$,

$$\sup_{g \in \mathcal{G}} \left[\frac{1}{n} \sum_{i=1}^{n} g(z_i) - \mathbb{E}[g(z)] \right] \leq 2 \widehat{\text{Rad}}_{\mathcal{D}_n}(\mathcal{G}) + 3B \sqrt{\frac{\log(2/\delta)}{2n}}$$

Taming Rademacher complexity

Question: How to prove an upper bound for Rademacher complexity?

Approach 1: General bounds based on covering number

- For computing $\widehat{\mathrm{Rad}}_{\mathcal{D}}$, we care about f only through the lens of $f(z_1),\ldots,f(z_n)$, where $\mathcal{D}=\{z_1,\ldots,z_n\}$
- ϵ -net and chaining

Approach 2: Tailored bounds to specific settings

- Linear models
- 2-layer neural networks (Homework)

Finite function class

Proposition (Massart's lemma)

Fix $\mathcal{D}=(z_1,\ldots,z_n)$, and let $\mathcal{G}_{\mathcal{D}}:=\{(g(z_1),\ldots,g(z_n)):g\in\mathcal{G}\}$. If $\frac{1}{n}\|v\|_2^2\leq B^2$ for all $v\in\mathcal{G}_{\mathcal{D}}$, then

$$\widehat{\mathrm{Rad}}_{\mathcal{D}}(\mathcal{G}) \leq B\sqrt{\frac{2\log|\mathcal{G}_{\mathcal{D}}|}{n}}.$$

Using Massart's lemma, we can also bound the Rademacher complexity in terms of \mathcal{G} :

$$\frac{1}{n}\sum_{i=1}^n g_j(z_i)^2 \leq B^2$$
 almost surely for all $g \in \mathcal{G} \implies \operatorname{Rad}_n(\mathcal{G}) \leq B\sqrt{\frac{2\log|\mathcal{G}|}{n}}$

Therefore, with probability at least $1 - \delta$,

$$\sup_{g \in \mathcal{G}} \left[\frac{1}{n} \sum_{i=1}^{n} g(z_i) - \mathbb{E}[g(z)] \right] \leq 2 \operatorname{Rad}_n(\mathcal{G}) + B \sqrt{\frac{\log(2/\delta)}{2n}} \leq 2 B \sqrt{\frac{2 \log(|\mathcal{G}|)}{n}} + B \sqrt{\frac{1}{2n} \log\left(\frac{2}{\delta}\right)}$$

General bound using ϵ -net

When $\mathcal{G}_{\mathcal{D}}$ is infinite, we may discretize $\mathcal{G}_{\mathcal{D}}$ w.r.t. $d(v,v')=\frac{1}{\sqrt{n}}\|v-v'\|_2$

Proposition

Let $\mathcal G$ be a family of functions from $\mathcal Z$ to [-1,1] and $\mathcal D=(z_1,\ldots,z_n)$. Then

$$\widehat{\mathrm{Rad}}_{\mathcal{D}}(\mathcal{G}) \leq \inf_{\epsilon > 0} \left(\epsilon + \sqrt{\frac{2 \log \mathcal{N}(\mathcal{G}_{\mathcal{D}}, \epsilon, d)}{n}} \right)$$

We can obtain the following (stronger) result using the chaining argument:

Theorem (Dudley's theorem)

Let $\mathcal G$ be a family of functions from $\mathcal Z$ to $\mathbb R$ and $\mathcal D=(z_1,\ldots,z_n)$. Then

$$\widehat{\mathrm{Rad}}_{\mathcal{D}}(\mathcal{G}) \leq 12 \int_0^\infty \sqrt{\frac{2 \log \mathcal{N}(\mathcal{G}_{\mathcal{D}}, \epsilon, d)}{n}} d\epsilon$$

Lipschitz continuous loss

Proposition (Talagrand's contraction principle)

Let $a_i : \Theta \to \mathbb{R}$, $i \in [n]$ and $b : \Theta \to \mathbb{R}$ be arbitrary functions. Let $\varphi_i : \mathbb{R} \to \mathbb{R}$ be a L-Lipschitz function for all $i \in [n]$. Then

$$\mathbb{E}_{\varepsilon} \left[\sup_{\theta \in \Theta} \left\{ b(\theta) + \sum_{i=1}^{n} \varepsilon_{i} \cdot \varphi_{i}(a_{i}(\theta)) \right\} \right] \leq L \cdot \mathbb{E}_{\varepsilon} \left[\sup_{\theta \in \Theta} \left\{ b(\theta) + \sum_{i=1}^{n} \varepsilon_{i} \cdot a_{i}(\theta) \right\} \right]$$

where ε is a random vector with independent Rademacher entries.

Apply this contraction principle to the supervised learning situation, conditioned on \mathcal{D}_n :

- Suppose a map that $\varphi: u_i \mapsto \ell(u_i, y_i)$ is L-Lipschitz for all $i \in [n]$ a.s.
- Let $\Theta = \{ (f(x_1), \dots, f(x_n)) : f \in \mathcal{F} \}$
- $a_i(\theta) = \theta_i$, b = 0, $\varphi_i(u) = \ell(u, y_i)$

This implies that $\widehat{\mathrm{Rad}}_{\mathcal{D}}(\mathcal{G}) \leq L \cdot \widehat{\mathrm{Rad}}_{\mathcal{D}}(\mathcal{F}) \implies$ Rademacher complexity of the *class of prediction functions* controls the uniform deviations

Norm-constrained linear predictions

Suppose that $\mathcal{F} = \{f_{\theta}(x) : \langle \theta, \varphi(x) \rangle, \ \|\theta\| \leq D\}$ Letting $\Phi = \begin{bmatrix} \varphi(x_1) & \dots & \varphi(x_n) \end{bmatrix}^{\top}$, observe that

$$\operatorname{Rad}_{n}(\mathcal{F}) = \mathbb{E} \left[\sup_{\|\theta\| \leq D} \left\{ \frac{1}{n} \sum_{i=1}^{n} \varepsilon_{i} \langle \theta, \varphi(x_{i}) \rangle \right\} \right]$$
$$= \mathbb{E} \left[\sup_{\|\theta\| \leq D} \frac{1}{n} \varepsilon^{\top} \Phi \theta \right]$$
$$= \frac{D}{n} \mathbb{E} \left[\|\Phi^{\top} \varepsilon\|_{*} \right]$$

where $\|\cdot\|_*$ is the dual norm² of $\|\cdot\|$

 $^{||}w||_* := \sup_{\|v\| < 1} \langle v, w \rangle$

Norm-constrained linear predictions: Examples

Example 1: Let $\mathcal{F} = \{f_{\theta}(x) = \langle \theta, \varphi(x) \rangle, \|\theta\|_2 \leq D\}$ and suppose $\mathbb{E}\left[\|\varphi(x_i)\|_2^2\right] \leq R^2$

$$\mathbb{E}\left[\|\Phi^{\top}\varepsilon\|_{2}\right] \leq \sqrt{\mathbb{E}\left[\|\Phi^{\top}\varepsilon\|_{2}^{2}\right]} = \sqrt{\mathbb{E}\left[\operatorname{Tr}\left(\Phi^{\top}\varepsilon\varepsilon^{\top}\Phi\right)\right]}$$
$$= \sqrt{\mathbb{E}\left[\operatorname{Tr}\left(\Phi^{\top}\Phi\right)\right]} = \sqrt{\mathbb{E}\left[\sum_{i=1}^{n}\|\varphi(x_{i})\|_{2}^{2}\right]} = \sqrt{n} \cdot \sqrt{\mathbb{E}\left[\|\varphi(x_{i})\|_{2}^{2}\right]}$$

$$\implies \operatorname{Rad}_n(\mathcal{F}) = \frac{D}{n} \mathbb{E} \left[\| \Phi^\top \varepsilon \|_2 \right] \le \frac{RD}{\sqrt{n}}$$

Example 2: Let $\mathcal{F} = \{f_{\theta}(x) = \langle \theta, \varphi(x) \rangle, \|\theta\|_1 \leq D\}$ and suppose $\|\varphi(x_i)\|_{\infty} \leq R$ a.s. $\Longrightarrow \operatorname{Rad}_n(\mathcal{F}) = \frac{D}{n} \mathbb{E} \left[\|\Phi^{\top} \varepsilon\|_{\infty} \right] \leq \frac{RD}{\sqrt{n}} \sqrt{2 \log(2d)}$

Example 3: Let
$$p > 1$$
 and q such that $\frac{1}{p} + \frac{1}{q} = 1$. Let $\mathcal{F} = \{f_{\theta}(x) = \langle \theta, \varphi(x) \rangle, \|\theta\|_{p} \leq D\}$ and suppose $\|\varphi(x_{i})\|_{q} \leq R$ a.s.

$$\implies \operatorname{Rad}_n(\mathcal{F}) = \frac{D}{n} \mathbb{E} \left[\| \Phi^\top \varepsilon \|_{\infty} \right] \leq \frac{RD}{\sqrt{n}} \frac{1}{\sqrt{p-1}}$$

References

Francis Bach.

Learning Theory from First Principles.

MIT press, 2024.