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Last time...

n

Asymptotic analysis: R(f) — R* < “+o (1)

Non-asymptotic analysis: Generalization bound via uniform convergence
® Uniform convergence: Pr (supgee |/A? 0) — R(8)| < e> >1-94
* If [©] < oo and ¢(fy(x),y) € [0, B], then with probability at least 1 —

/I 2 o)) /
sup ’R og( | ) +By\/ — Iog
0o

overhead for uniform control

* If © is compact, £(fy(x),y) € [0, B], and ¢ is L-Lipschitz w.r.t. 6, then for any € > 0,

sup’R IA?(9)| <2le+ B\/IOgQN(e’E))+B\/1 log <1>

Ee) 2n 2n )

Motivating question: Is the cardinality |©| an appropriate notion of complexity?
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Agenda

® Rademacher complexity

® Generalization bound based on Rademacher complexity

® Examples
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Rademacher complexity

Definition
Let n € N. The Rademacher complexity of a function class G = {g: Z — R} is

Radn(9) = Ecp, lSUP Ze,g(z, ]
gcd i

where € = (e1,...,&,) is a Rademacher random vector® and D, = {z1,...,2,} ~ p is an
i.i.d. sample drawn from Z

?e; being i.i.d. Rademacher random variables; £; = +1 with probablllty 5 each

® Geometric interpretation as a width — Verify the properties in [Bac24, Exercise 4.9]
e Connection to generalization:

* z=(xy)
* g(z) = Uf(x),y)
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Relating Rademacher complexity to uniform deviation

Rademacher complexity yields an upper bound on uniform deviation

Symmetrization
For any G, E [supgeq { § ©1 £(21) — Elg(2)]}] < 2Rady(6)

Proof!. Let D' = {Z],...,Z,} be an independent copy of data D.

[sup{ > i(e) E[gz)]H [p{ > fe(a) () 2

geg

)
e o {ié (s te0) | ]|
=Epor [sup {,1, Zn: (g(z") B g(z’{)) H

geg i=1

<E

'Similarly, we can show E [sup,.g {E[g(2)] — 2 37, g(z)}] < 2Rad(G)

i=
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Proof of symmetrization (cont’d)

By the symmetry in the laws of ¢; and of g(z;) — g(z})

WAl

ED D! lsup { 1 i (g(z,-) — g(zl’)) }] Ep Dl e [sup {

48 i=1

(o)

i=1

< ED,& lsup{ Zglg Zj }]
gcg i=1

n
+Ep o lsup { > _5ig(21{)}]
gcg (N

= 2Rad,(

s 3“—‘
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Resulting high-probability bound

Rademacher complexity provides a control on the expectation of uniform deviation

Can we obtain high-probability bounds?

® Apply concentration inequalities
If g(z) € [0, B] for all (g,z) € G x Z, then with probability at least 1 — 9,

e Zg(zl — E[g(2) ]1 < 2Rad,(G) + B 'Oggi/f”

Note that Rad,(G) is averaged over all possible D,
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Empirical Rademacher complexity

An empirical version can be defined, which does not take expectation with respect to D,:

— 1
Radp,(G) =E. |sup= Y cig(z)
geg n ZieDn
Note that Radp,(G) is dependent on both function class G and data D,
As the name suggests, Ep, [Radp,(G)] = Rad,(G)

If g(z) € [0, B] for all (g,z) € G x Z, then with probability at least 1 — 9,

sup Zgz, _ Elg(2)]| < 2Radp, (G) + 38y '08EL%)
8€g 2n
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Taming Rademacher complexity

Question: How to prove an upper bound for Rademacher complexity?

Approach 1: General bounds based on covering number

* For computing Radp, we care about f only through the lens of f(z1),...,f(zn),
where D = {zi,...,2z,}

® c-net and chaining

Approach 2: Tailored bounds to specific settings
® |inear models

® 2-layer neural networks (Homework)
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Finite function class

Proposition (Massart's lemma)

Fix D = (z1,...,2,), and let Gp = {(g(z1),-..,&(zn)) : g € G}. If L||v|3 < B2 for all
v € Gp, then

_ 2|
Radp(G) < B M.

Using Massart’s lemma, we can also bound the Rademacher complexity in terms of G:

150 gi(z1)? < B? almost surely for all g € G = Rad(G) < By/ 2'%@'

Therefore, with probability at least 1 — 4,

sup | 25 g(z) - E[g(z)]] < 2Rady(g) + By ) < 5 [2108UGD 4 g [ 110 (2
geg | N n n n
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General bound using e-net

When Gp is infinite, we may discretize Gp w.r.t. d(v,v') = inHv — V|2

Proposition
Let G be a family of functions from Z to [—1,1] and D = (zi,...,z,). Then

Radp(G) < inf (6 n \/2 log N(Gp, €, d))
>0 n

We can obtain the following (stronger) result using the chaining argument:

Theorem (Dudley's theorem)
Let G be a family of functions from Z to R and D = (z1,...,2,). Then

Radp(G) < 12/0“ \/2'°g ’V(SD’G’ 9) ge
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Lipschitz continuous loss

Proposition (Talagrand's contraction principle)

Let a; : © - R, i € [n] and b: © — R be arbitrary functions. Let p; : R — R be a
L-Lipschitz function for all i € [n]. Then

E. [sup {b(&) + Zn:efi : (Pi(ai(‘g))}
i=1

0O

<L-E. [sup {b(@) + 2”:& : a,-(@)H

0c® i=1

where € is a random vector with independent Rademacher entries.

Apply this contraction principle to the supervised learning situation, conditioned on D,:
® Suppose a map that ¢ : u; — £(uj, y;) is L-Lipschitz for all i € [n] a.s.
® Let © = {(f(x1),...,f(xn)) : f € F}
L 31(9) =0;, b=0, cp,-(u) = E(u,y,-)
This implies that Radp(G) < L - Radp(F) = Rademacher complexity of the class of
prediction functions controls the uniform deviations
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Norm-constrained linear predictions

Suppose that F = {fy(x) : (8, p(x)), ||0]] < D}
T
Letting ® = {gp(xl) cp(x,,)} , observe that

1 n
Rad,(F)=IE| su — (6, o(x;
) LIGSIIED{”;€< A )>H
=E l sup leTCDG]
le|<p N
D

n

E[joe.]

where || - ||« is the dual norm? of | - ||

2HW||* = SUP\|V||§1<V» w)
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Norm-constrained linear predictions: Examples

Example 1: Let 7 = {fy(x) = (0, ¢(x)), ||0]|2 < D} and suppose E [|l¢o(x;)|3] < R?

E[[07el] < VE[|0Te|3] = VE[Tr (0TeeTo)]

= VE[Tr (¢7)] —$ [ZH@ Xl)||2‘| =vn-E[lle()l3]

— Rad,(F) = 2E ¢ 7¢||] < B2

Example 2: Let F = {fy(x) = (0, ¢(x)), ||0||1 < D} and suppose ||¢(xi)]|lcc < R a.s.

— Rad,(F) = 2B [0 el|| < B2 /2T0g(2d)

Example 3: Let p > 1 and g such that % + % =1. Let
F ={fy(x) = (0, o(x)), |0]l, < D} and suppose [ (xi)llq < R a.s.

— Rads(F) = 2B [|07¢||o] < 21
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