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Motivation

So far, we discussed how to control the excess risk

R(f3) — R = (R(fy) = R(fp)) + (R(fo-) — R")

estimation error approximation error

However...
® Qur discussion focused exclusively on estimation error

® We ended up with a Rademacher complexity upper bound for linear models
Kernels provide a way to represent a class of functions F, = {(6, p(x))} that can

represent non-linear prediction functions (via non-linear feature map ¢) while enjoying the
uniform convergence bound akin to linear models
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Agenda

Kernels

® Three viewpoints for kernel methods

Learning with kernels: Examples

Additional topics related to kernels
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Kernels

Definition

A function k : X x X — R is a (positive semidefinite) kernel if for every finite set
X1,-..,Xn € X, the associated kernel matrix K € R"*" such that Kj; = k(x;, x;) is
positive semidefinite (PSD).

Examples:
e Linear kernel: k(x,x) = (x,x’)
® Polynomial kernel: k(x,x") = (1 + (x,x’))P

2
® Gaussian kernel: k(x, x") = exp (—”XX”2)

202

How to check?
® Check K > 0 for all instances of kernel matrices
e “Kernel calculus”: (a) k(x,x") = f(x)f(x’) is PSD, Vf; (2) K1, K> = 0 =
Ki+Ky>=0and Kio K> >0
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Three viewpoints for kernel methods

Feature map ¢ : X — RY (or H)

® Properties of a single data point

Kernel kK : X x X — R

® Similarity between data points

Reproducing kernel Hilbert space (RKHS) H : ({f : X — R}, (-, -)n)
® Prediction function f : X = R

Indeed, these three viewpoints are closely related and equivalent
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Feature < kernel

If o : X — H is a feature map, then k(x,x") = (¢(x), (X)) is a kernel.

For every kernel k, 3H and ¢ : X — H such that k(x,x") = (¢(x), p(x)).
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Reproducing kernel Hilbert space

Definition
A Hilbert space of functions f : X — R is a RKHS if the evaluation functional is bounded
for all x € X.

Proposition
Every RKHS H defines a unique kernel k : X x X — R called the reproducing kernel of H.

Proposition (More-Aronszajn)
For every kernel k, there exists a unique RKHS H with reproducing kernel k.




Representer theorem

Let
f*e arg ,rcréi,}r_}{L({(X,',y,',f(X,')) S [n]}) + Q(Hﬂ‘%—[)}

where L: (X x Y x R)* — R is an arbitrary function and Q : R — R is strictly monotone
increasing

Theorem
Let f* be defined as above. Then f* € span ({k(x;,-) : i € [n]}).
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