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Motivation

So far, we discussed how to control the excess risk

R(fθ̂) − R∗ =
(
R(fθ̂) − R(fθ∗)

)︸ ︷︷ ︸
estimation error

+
(
R(fθ∗) − R∗)︸ ︷︷ ︸

approximation error

However...
• Our discussion focused exclusively on estimation error
• We ended up with a Rademacher complexity upper bound for linear models

Kernels provide a way to represent a class of functions Fφ = {⟨θ, φ(x)⟩} that can
represent non-linear prediction functions (via non-linear feature map φ) while enjoying the
uniform convergence bound akin to linear models
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Agenda

• Kernels

• Three viewpoints for kernel methods

• Learning with kernels: Examples

• Additional topics related to kernels
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Kernels

Definition
A function k : X × X → R is a (positive semidefinite) kernel if for every finite set
x1, . . . , xn ∈ X , the associated kernel matrix K ∈ Rn×n such that Kij = k(xi , xj) is
positive semidefinite (PSD).

Examples:
• Linear kernel: k(x , x ′) = ⟨x , x ′⟩
• Polynomial kernel: k(x , x ′) = (1 + ⟨x , x ′⟩)p

• Gaussian kernel: k(x , x ′) = exp
(

−∥x−x ′∥2
2

2σ2

)
How to check?

• Check K ⪰ 0 for all instances of kernel matrices
• “Kernel calculus”: (a) k(x , x ′) = f (x)f (x ′) is PSD, ∀f ; (2) K1, K2 ⪰ 0 =⇒

K1 + K2 ⪰ 0 and K1 ◦ K2 ⪰ 0
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Three viewpoints for kernel methods

Feature map φ : X → Rd (or H)
• Properties of a single data point

Kernel k : X × X → R
• Similarity between data points

Reproducing kernel Hilbert space (RKHS) H : ({f : X → R}, ⟨·, ·⟩H)
• Prediction function f : X → R

Indeed, these three viewpoints are closely related and equivalent
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Feature ↔ kernel

Proposition
If φ : X → H is a feature map, then k(x , x ′) = ⟨φ(x), φ(x ′)⟩ is a kernel.

Proposition
For every kernel k, ∃H and φ : X → H such that k(x , x ′) = ⟨φ(x), φ(x ′)⟩.
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Reproducing kernel Hilbert space

Definition
A Hilbert space of functions f : X → R is a RKHS if the evaluation functional is bounded
for all x ∈ X .

Proposition
Every RKHS H defines a unique kernel k : X × X → R called the reproducing kernel of H.

Proposition (More-Aronszajn)
For every kernel k, there exists a unique RKHS H with reproducing kernel k.
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Representer theorem

Let
f ∗ ∈ arg min

f ∈H

{
L

( {(
xi , yi , f (xi)

)
: i ∈ [n]

} )
+ Q

(
∥f ∥2

H
)}

where L : (X × Y × R)∗ → R is an arbitrary function and Q : R → R is strictly monotone
increasing

Theorem
Let f ∗ be defined as above. Then f ∗ ∈ span ({k(xi , ·) : i ∈ [n]}).
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