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STA 35C Statistical Data Science III

Final exam solution

Instructor: Dogyoon Song

Problem 1 (16 points total). Multiple-choice Questions

(a) Linear regression: R2

■ R2 measures the proportion of variability in Y explained by the model.

□ R2 can take on any values between −1 and 1.

■ If R2 = 1, then the model’s predicted values match the actual response perfectly.

□ A large R2 always guarantees excellent out-of-sample performance.

(b) Classification thresholds & errors

□ In a discriminative approach (e.g. logistic regression), we explicitly model p(X | Y ) and p(Y ).

□ A false negative occurs when the actual class is negative (Y=0) but we predict positive (Y=1).

□ A generative method (e.g. LDA) often models p(X | Y ) and p(X).

■ Lowering p∗ generally increases the number of predicted positives.

(c) Best subset selection

■ Best subset selection fits all possible subsets of predictors of each size to find the best subset.

□ It always returns the model with the lowest test error among all subsets.

■ It can suffer from high computational cost if the number of predictors is large.

□ It cannot choose a different best model size than backward stepwise selection.

(d) Cross-validation

□ k-fold cross-validation splits the data into k folds, using 1 fold for training and k − 1 folds for testing.

■ Leave-one-out cross-validation is a special case of k-fold where each fold contains exactly 1 observation.

■ Cross-validation can be used to select tuning parameters or compare models’ predictive performance.

□ k-fold cross-validation always guarantees the absolute minimum test error.
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(e) Regularization

□ Ridge regression penalizes coefficients by their absolute values (ℓ1-penalty).

■ Increasing the regularization parameter λ generally shrinks coefficients toward zero.

□ Lasso always outperforms ordinary least squares in terms of test error.

□ Ridge can set some coefficients exactly to zero, similar to Lasso.

(f) Regression splines: Degree-3 spline

■ A degree-3 spline is a piecewise cubic polynomial function.

■ It is continuous up to its second derivative at each knot.

□ It must have a continuous third derivative at each knot.

□ “Natural splines” are splines with additional degrees of freedom for a more natural fit.

(g) PCA (Principal Component Analysis)

■ The first and the second principal components are orthogonal to each other.

□ The first principal component always aligns with the direction of smallest variance in X.

■ PCA can reduce the dimensionality of X by projecting onto a few components.

□ PCA requires a labeled response Y to identify the principal axes.

(h) Clustering

□ Clustering is a supervised learning task.

□ In clustering, each observation has a numeric response Y used to form clusters.

■ k-means and hierarchical clustering are two common approaches.

□ Clustering can only be done with at most two features per observation.
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Problem 2 (24 points total). True/False with Justification

(a) “If the first principal component explains 80% of the variance in X, then it must be the single best

predictor of the response Y among all principal components”

False.

Reason: The first principal component is chosen to capture the most of the variance in X along the

direction, not necessarily to maximize predictive power for Y . High variance in X does not guarantee

a strong correlation with Y .

(b) “When using cross-validation, having more folds (e.g., k = 10 instead of k = 5) always guarantees a

lower test error.”

False.

Reason: Using more folds (e.g., k = 10 instead of k = 5) typically stabilizes the estimated validation

error (across multiple possible random splits of a given dataset) and decreases in the estimated test error

for a given dataset, however, can increase the variance (variability across multiple datasets). Thus, it

does not guarantee a lower actual test error.

(c) “Lowering the decision threshold p∗ in a logistic model will generally increase both the false positive

rate and the true positive rate.”

True.

Reason: Lowering the threshold p∗ tends to classify more observations as positive, which increases

both the true positive rate and the false positive rate.

(d) “Adding more predictors to a linear model always reduces the test error.”

False.

Reason: Adding more predictors can reduce bias but may increase variance; as such, overfitting may

occur and raise test error rather than lowering it.

(e) “In k-means clustering, the final partition is guaranteed to be the global minimum of the objective

function.”

False

Reason: The k-means algorithm can converges to a local (rather than global) minimum depending on

initialization, so it is not guaranteed to always find the global minimum.

(f) “When we want to keep the probability of making at least one false rejection below 5%, we typically

control the False Discovery Rate (FDR) at 5%.”

False.

Reason: The family-wise error rate (FWER) is the probability of at least one false rejection among all

tests, whereas the false discovery rate (FDR) is the expected proportion of false rejections among those

rejected. Controlling FDR at 5% does not ensure the probability of any false rejection is below 5%.
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Problem 3 (20 points total). Statistical Learning

(a) (6 points) Define training error and test error, and explain their roles in fitting and evaluating a model.

• Training error measures how well the model fits the data on which it was trained, e.g. via mean

squared error or classification error. Models are often fit by minimizing this error.

• Test error is the average loss on new, unseen data, reflecting the model’s ability to generalize to

observations not used in training. This is typically the error used to evaluate the performance of

the fitted model on new, unseen test dataset.

(b) (7 points) In the right figure below, state which curve (upper or lower) represents test error. Then,

explain the bias-variance tradeoff in one or two sentences, describing how (squared) bias, variance, and

irreducible error might change as the model flexibility increases. Lastly, choose the model you would

use (among three options) and briefly justify.

• The upper curve (initially decreasing, then increasing) represents the test error.

• Bias–variance trade-off: As model flexibility increases, the squared bias typically decreases, vari-

ance increases, and the irreducible error is constant; these combine to form the U-shaped test-error

curve.

• Model choice: Select the model at the point minimizing the test-error curve (the mid-complexity

choice among the three options), where bias and variance are best balanced.

(c) (7 points) State the purpose of cross-validation in one sentence, and describe how k-fold cross-validation

computes validation error using a training dataset of size n.

• Purpose: Cross-validation estimates a model’s out-of-sample prediction error using only the train-

ing data.

• Procedure:

– Split the training data into k folds of roughly equal size.

– For each fold j = 1, . . . , k, fit the model on the other k−1 folds (≈ k−1
k n points) and compute

the loss on fold j (≈ n
k points).

– Average these k validation losses to obtain the cross-validated error estimate.

Use: We compare these estimates across different models or tuning-parameter values and pick the

one with the lowest estimated test error.
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Problem 4 (40 points total + 3 bonus points). Regression

(a) (10 points total). Suppose you have a dataset {(X1, Y1), . . . , (Xn, Yn)}, and want to regress Y on X.

(i) (5 points) Describe how to obtain least squares estimates for the regression coefficients in the model:

(Model 1) Y ≈ β0 + β1X.

Either write down the objective function to be minimized, or explain visually (e.g. with a scatter plot)

how the best-fit line and parameters are determined.

The least squares estimates β̂0, β̂2 are obtained by minimizing the residual sum of squares (or

equivalently, mean squared error, up to normalization) of the model:

RSS(β0, β1) =

n∑
i=1

(Yi − β0 − β1Xi)
2.

Geometrically, this gives the best-fit line by making the sum of squared vertical distances from each

(Xi, Yi) to the line as small as possible in the ℓ2 (mean of squares) sense.

(ii) (5 points) Suppose the fitted model yields β̂0 = −3, β̂1 = 5. Predict Y at xnew = 2, and explain

why the actual y-value (ynew) may differ from the predicted value.

Ŷnew = β̂0 + β̂1xnew = −3 + 5 ∗ 2 = 7.

The realized value ynew may differ from 7 because of the random error term ε in the data-generating

process Y = β0 + β1X + ε;. The error term ε accounts for omitted (=not included in the model)

factors and pure randomness in generating Y .

(b) (15 points total + 3 bonus points). Now consider two more flexible models:

(Model 2) Y ≈ β0 + β1X + β2X
2,

(Model 3) Y ≈

{
β1,0 + β1,1X, X ≤ c,

β2,0 + β2,1X, X > c.
(c : hyperparameter)

(i) (5 points) Explain under what circumstances these might be preferred over a simple linear model

(Model 1). Discuss their relative flexibility and possible impacts on bias, variance, or irreducible error.

• Flexibility. Adding X2 term (Model 2) captures global curvature, and is useful when Y varies

nonlinearly with X (curved). The piece-wise linear model with a breakpoint c (Model 3) captures

a sudden change or ”kink” in the slope at X = c, and will be preferred when there is an abrupt

change in the trend before and after a certain threshold of X.

• Bias–variance. Compared with Model 1, both Model 2 and Model 3 can reduce bias if the true

mean function is curved or has a kink, but at the expense of increased variance. If the sample size

is sufficiently large to support the extra parameters, total test error may decrease. Irreducible

error is unaffected.

(ii) (5 points) Suppose you fit Models 1, 2, and 3 by least squares to the same dataset depicted below.

Sketch each regression function below. For Model 3, choose a breakpoint c appropriately.

• Model 1: A single straight line through the data.

• Model 2: A smooth, quadratic shape (parabola) matching the overall trend of the data points.

• Model 3: Two line segments with different slopes, possibly (but not necessarily) meeting at a

breakpoint c.
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(iii) (5 points) Define a cubic spline and a natural cubic spline, specifying the constraints they must

satisfy and how they differ.

• Cubic spline: A function that is piece-wise cubic between pre-chosen knots, with continuity in

the function, first derivative, and second derivative at every knot.

• Natural cubic spline: A cubic spline with additional constraints forcing the spline to be linear

beyond the boundary knots (i.e. its second derivative is zero outside the boundary region). This

prevents erratic extrapolation (e.g. oscillations) near the boundaries.

(iv*) (3 bonus points*) What is a smoothing spline? Briefly explain what the fitted curve look like in

the two limits: (a) as λ → 0 and (b) as λ → ∞.

For any λ > 0, a smoothing spline refers to the function f̂λ such that

f̂λ = arg min
g∈C2

{ n∑
i=1

(
Yi − g(Xi)

)2
+ λ

∫ (
g′′(t)

)2
dt
}
,

where C2 means the set of all smooth functions (twice continuously differentiable, to be precise).

Here, the parameter λ balances data fidelity and smoothness. For any λ, the resulting function is a

natural cubic spline with cut points at x1, . . . , xn.

• As λ → 0, the penalty is negligible, and the spline f̂λ interpolates all data (becoming very wiggly).

• As λ → ∞, the smoothness penalty dominates and the spline f̂λ converges to the linear least-

squares line (second derivative forced to zero everywhere).

(c) (15 points total). Finally, you want to predict Y using three predictors: D (binary, e.g. treatment

indicator), X1, and X2, all numeric except D being categorical (0/1). You fit three models:

Model A: Y ≈ α0 + α1 D,

Model B: Y ≈ β0 + β1 X1,

Model C: Y ≈ γ0 + γ1 D + γ2 X1 + γ3 X2,

and obtain the following R2 values and coefficient estimates:

Model A: R2 = 0.4 α1 = 2, with SE = 0.75;

Model B: R2 = 0.6 β1 = 4, with SE = 1.25;

Model C: R2 = 0.9 γ1 = −4, γ2 = 1, γ3 = 3, with SEs (1.33, 2.5, 0.5), corr(X1, X2) = 0.8.

(i) (5 points) Which model likely has the best predictive fit? Define R2 and explain its meaning briefly.

Model C (R2 = 0.9) explains 90% of the variability in Y and likely gives the best predictive fit. By

definition,

R2 = 1− RSS

TSS

measures the proportion of total variance in Y explained by the model (i.e., predictors).

(ii) (5 points) How do we interpret β1 in Model B? How does this differ from interpreting γ2 in Model C?

• In Model B, β1 quantifies the expected change in Y for a one-unit increase in X1, ignoring (=not

accounting for) other variables.

• In Model C, γ2 measures the expected change in Y for a one-unit increase in X1, holding D and

X2 fixed, and thus, quantifies a partial effect.

(iii) (5 points) Based on the information above, discuss what these data suggest about Y ’s relationship

to D,X1, X2. (Hint: Discuss the significance of correlation, sign of the effect, etc.)
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• D and Y : The positive value α1 = 2 (SE 0.75) in Model A looks significant, but might have

been confounded by X2. In Model C, γ1 = −4 (SE 1.33) indicates a roughly 4-unit decrease in

Y for D = 1 versus D = 0, after adjusting for X1 and X2.

• X1 and Y : γ2 = 1 (SE 2.5) is not clearly significant, likely due to the strong correlation (0.8)

between X1 and X2. Its effect was more apparent in Model B, which did not include X2, however,

the seemingly significant association β1 = 4 (SE 1.25) in Model B is likely due to the indirect

channel through X2. In conclusion, the unique contribution of X1 on Y is uncertain.

• X2 and Y : The large R2 and the highly significant γ3 = 3 (SE 0.5) suggest X2 is a strong positive

predictor for Y after adjusting for others.

• Overall, Y responds most clearly to X2 and to D (negative effect); direct evidence for an inde-

pendent effect of X1 on Y is weak once X2 is included in the model.
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Problem 5 (40 points total + 3 bonus points). Classification

(a) (10 points total). Consider a two-dimensional logistic regression model:

log
p(X)

1− p(X)
= β0 + β1 X1 + β2 X2, where p(X) = Pr[Y = 1 | X].

Suppose the estimated coefficients are β̂0 = −4, β̂1 = 3, β̂2 = 2.

(i) (5 points) For xtest = (1, 1), compute p̂(xtest) and decide whether ŷtest = 1 or 0 using the decision

rule ”ŷ = 1 if and only if p̂(x) ≥ p∗ = 0.5”.

p̂(xtest) =
1

1 + e−(−4+3·1+2·1) =
1

1 + e−1
≈ 0.731.

Since 0.731 ≥ 0.5 = p∗, predict ŷtest = 1.

(ii) (5 points) In the figure below, draw the decision boundary for p∗ = 0.5, label intercepts, and indicate

the region where Ŷ = 1.

ŷ = 1 ⇐⇒ p̂(x) ≥ 0.5

⇐⇒ −4 + 3x1 + 2x2 ≥ 0

⇐⇒ x2 ≥ −3

2
x1 + 2.

Points lying above the line (including the line) in the Figure above are classified as Ŷ = 1, and points

below as Ŷ = 0.

(b) (15 points total). The PDF of a Gaussian random variable with mean µ and variance σ2 is

f(x | µ, σ) = 1√
2π σ2

exp
(
− (x− µ)2

2σ2

)
.

(i) (5 points) Explain briefly how generative modeling approaches for classification use Bayes’ rule to for-

mulate the conditional probability Pr[Y |X], and discuss how it differ from discriminative approaches.

Generative models (e.g., LDA) estimate Pr(Y | X) by modeling the class-conditional density of X,

p(X | Y ), and the marginal probability for each class, p(Y ), and then using Bayes’ rule:

Pr(Y = k | X) =
Pr(X | Y = k) Pr(Y = k)∑
k′ Pr(X | Y = k′) Pr(Y = k′)

.

By contrast, discriminative methods (e.g., logistic regression) estimate Pr(Y | X) directly using a

postulated functional form, without modeling the class-conditional density of X.
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(ii) (5 points) Suppose that we have a dataset

Class 0: x = {−3, −2, 0, 1}, Class 1: x = {4, 5, 6}.

What class would LDA predict for x = 2?

• Estimated means: µ̂0 = −1, µ̂1 = 5.

• Pooled variance is common. Priors: π0 = 4/7, π1 = 3/7.

• x = 2 is exactly midway between the means; with a larger prior for class 0 the LDA discriminant

favors Class 0 .

(iii) (5 points) If you additionally collect two points, x = {3.5, 6.5} from Class 1, does that change your

class prediction with LDA at x = 2? Justify briefly.

New π1 = 5/9 > π0 and µ̂1 stays at 5. The prior term now tilts the discriminant in favor of class

1, so x = 2 is assigned to Class 1 . Thus the prediction changes because the class proportions (and

hence the prior odds) have changed.

(c) (15 points total + 3 bonus points).

(i) (5 points) From 100 data points, you obtained the following confusion matrix (at p∗ = 0.5):

Pred = 1 Pred = 0

Y = 1 52 8

Y = 0 6 34

Compute the true positive rate (TPR) and false positive rate (FPR).

TPR =
52

52 + 8
≈ 0.867 and FPR =

6

6 + 34
= 0.15.

(ii) (5 points) If p∗ increases from 0.5 to 0.9, do you expect more, fewer, or the same number of false

positives/negatives? Provide a reason briefly.

Raising p∗ to 0.9 produces fewer predicted positives, so false positives decrease while false negatives

increase.

(iii) (5 points) In some scenarios (e.g. medical tests, fraud detection), p∗ might be set to a value other

than 0.5. Give an example scenario in one sentence where p∗ > 0.5 might be preferable, then explain

how that choice affects decisions and why it could lead to a more desirable outcome.

Example scenario with p∗ > 0.5: Approving large bank loans cautiously.

For instance, in fraud detection or large bank loans, one might choose p∗ > 0.5 to require stronger

evidence before predicting “positive.” This reduces false positives (e.g. granting risky loans) at the

cost of missing some actual positives but may be more desirable given the higher cost of false positives.

(iv*) (3 bonus points*) How do we pick p∗ to maximize TPR while keeping FPR ≤ 10%? Draw an

example ROC curve below, and illustrate your decision on it, marking your chosen operating point

with each axis and coordinate clearly labeled.

On the ROC curve, vary the threshold from 0 to 1 and plot (FPR, TPR). To constrain FPR ≤ 0.1,

pick the point on the curve with FPR ≤ 0.1 and the highest possible TPR, which typically is located

at where the ROC curve intersects the vertical line FPR = 0.1. That operating point corresponds to

the desired threshold p∗.
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Problem 6 (20 points total). Inference & Hypothesis Testing

(a) (10 points) You have an estimate θ̂ = 10 of a parameter θ, which lacks a standard error formula

available. You bootstrap and acquire 5 estimates:

6, 8, 8, 11, 12.

Using a normal approximation, construct a 95% confidence interval for θ, with θ̂ and the standard

deviation estimated from the 5 bootstrap estimates. (Hint : z0.975 ≈ 1.96.) Then state how to interpret

the “95%” in this confidence interval—i.e., which probability is intended to be about 95%.

• Bootstrap standard error : Estimates s =

√
1

B − 1

∑B
b=1(θ̂

∗
b − ¯̂

θ ∗)2 with θ̂ ∗ = (6, 8, 8, 11, 12) gives

s ≈ 2.449.

• 95% confidence interval (normal approx.) :

θ̂ ± z0.975 s = 10± 1.96 ∗ 2.449 = (5.20, 14.80).

• Interpretation: Repeating this sampling and bootstrap procedure many times would produce

intervals containing the true θ in about 95 % of those repetitions.

(b) (10 points total). For a single null hypothesis H0, the table on the left below shows the probabilities of

each outcome (p1+p2+p3+p4 = 1). Now suppose we havem (e.g. 100) hypotheses tested simultaneously;

let N1, N2, N3, N4 count each outcome, so N1 +N2 +N3 +N4 = m.

Single H0 is true H0 is not true

Reject H0 p1 p2

Not reject H0 p3 p4

Multiple H0 is true H0 is not true

Reject H0 N1 N2

Not reject H0 N3 N4

(i) (5 points) If we reject H0 at level α (e.g. 0.05), express this requirement as an inequality involving

p1, p2, p3, p4, and α.

Controlling the level at α requires

Pr(reject H0 | H0 true) =
p1

p1 + p3
≤ α.

(ii) (5 points) Define the family-wise error rate (FWER) and the false discovery rate (FDR) using these

probabilities/counts. Explain their meanings in one sentence each.

• Family–wise error rate (FWER):

FWER = Pr(N1 ≥ 1)

→ Probability of at least one false rejection among all m hypothesis tests.

• False discovery rate (FDR):

FDR = E
[ N1

N1 +N2

]
→ Expected proportion of false rejections among all rejections.
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Problem 7 (20 points total). Model Selection & PCA

(a) (7 points) Compare and contrast principal component analysis (PCA) against best subset selection.

In your answer, (i) state the main goal of PCA vs. best subset selection, and (ii) outline how each

procedure operates.

PCA Best subset selection

Unsupervised learning Supervised learning

Dimension reduction by finding orthogonal direc-

tions of maximal variance in X.

Choose the predictor set that minimizes prediction

error for Y .

Finds the direction u along which the projection of

X has maximal variance (with orthogonality con-

straints); keeps the first few components.

Fits every subset (or an efficient approximation)

and picks the one with best fit (R2
adj, cross-

validation etc.).

(b) (6 points) Suppose you have a two-dimensional dataset of five points:

X =
{
(−4, 2), (−1, 3), (0, 4), (2, 6), (3, 5)

}
.

Compute the directional variance of this dataset along the vector e1 = (1, 0) and e2 = (0, 1). Then,

decide whether u1 (the first principal component) is “closer” to e1 or e2, and briefly justify.

X = {(−4, 2), (−1, 3), (0, 4), (2, 6), (3, 5)}, =⇒ x̄ = (0, 4).

Vare1
=

1

5

∑
(xi − x̄)2 = 6, Vare2

=
1

5

∑
(yi − ȳ)2 = 2.

The larger variance lies along e1; hence the first PC direction u1 is closer to e1 (the horizontal axis).

(c) (7 points). Performing PCA on a dataset yields 7 principal components with variances:

28, 16, 9, 3, 2, 1, 1.

Sketch a scree plot and compute the cumulative proportion of variance explained (PVE) by the top 3

components. Then briefly discuss the trade-offs of keeping too few or too many components.

Variances: 28, 16, 9, 3, 2, 1, 1, =⇒ Total = 60.

• Scree plot: Plot component index (1–7) on the x-axis versus variance on the y-axis; expect a sharp

elbow after the 3rd component.

• Cumulative PVE (top 3):
28 + 16 + 9

60
= 0.883 (88.3%).

• Trade-off: Too few PCs may omit meaningful signal (high bias); too many complicate models and

possibly re-introduce noise (higher variance, interpretation difficulty).
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Problem 8 (20 points total). Clustering

(a) (14 points total). You have a two-dimensional dataset:

z1 = (0, 2), z2 = (2, 1), z3 = (3, −2), z4 = (6, 0).

(i) (7 points) Briefly explain the k-means algorithm and illustrate two iterations of k-means with k = 2

on {z1, z2, z3, z4}, assuming the initial cluster assignment:

C1 = {z1, z3}, C2 = {z2, z4}.

Initial assignment C1 = {z1, z3}, C2 = {z2, z4}.
Iteration 1:

Compute centroids µ
(0)
1 = (1.5, 0), µ

(0)
2 = (4, 0.5).

Re-label points z1, z2, z3 are closer to cluster 1, and z4 is closer to cluster 2.

Iteration 2:

Compute centroids µ
(1)
1 = (1.667, 0.333), µ

(1)
2 = (6, 0).

Re-label points Assignments do not change, so the algorithm has converged:

C1 = {z1, z2, z3} , C2 = {z4} .

(ii) (7 points) Using complete linkage, construct a dendrogram for {z1, z2, z3, z4}. Then explain how you

would form two clusters from this dendrogram and identify those clusters.

• Pairwise distances (Euclidean):

Pair Distance Pair Distance

(1,2)
√
5 (2,3)

√
10

(1,3) 5 (2,4)
√
17

(1,4)
√
40 (3,4)

√
13

• Merge {z1, z2} first (smallest max-distance
√
5) at height

√
5 ≈ 2.236. Update pairwise distance

using complete linkage:

Pair Distance

({1,2},3) max{5,
√
10} = 5

({1,2},4) max{
√
40,

√
17} =

√
40

(3,4)
√
13

• Next merge {z3, z4} at height
√
13 ≈ 3.606.

• Final merge of the two clusters {z1, x2} and {z3, z4} at height max{5,
√
40} =

√
40 ≈ 6.325.

Cutting the dendrogram below 6.325 but above 3.606 yields the two clusters: {z1, z2} and {z3, z4} .

(b) (6 points). State one advantage and one drawback of k-means compared to hierarchical clustering.

• Advantage of k-means: It is computationally fast and handles large datasets efficiently.

• Drawback of k-means: One must choose k in advance, and the final result can depend on the initial

assignment of clusters.
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