
STA 35C Spring 2025 Midterm exam 1 solution

STA 35C Statistical Data Science III

Midterm exam 1 solution

Instructor: Dogyoon Song

Problem 1: Solution (20 points + 2 bonus)

(a) E[X] and Var(X) for X ∼ Binomial(2, 1
3 ).

• E[X] = n p = 2× 1
3 = 2

3 .

• Var(X) = n p (1− p) = 2× 1
3 × 2

3 = 4
9 .

Method 2: Alternatively, X = X1 +X2 where X1, X2 ∼ Bernoulli( 13 ) i.i.d. Since E[X1] =
1
3 and Var(X1) =

E[X2
1 ]− E[X1]

2 = 1
3 − 1

9 = 2
9 , it follows that

E[X] = E[X1] + E[X2] =
2
3 , and Var(X) = Var(X1) + Var(X2) =

4
9 .

Method 3: Otherwise, we can directly use the PMF to obtain

E[X] =

2∑
x=0

x pX(x) = 0 ·
(
2

0

)
·
(
2

3

)2

+ 1 ·
(
2

1

)
· 1
3
· 2
3
+ 2 ·

(
2

2

)
·
(
1

3

)2

=
2

3

Similarly, we can compute E[X2] = 8
9 , and thus, Var(X) = E[X2]− E[X]2 = 4

9 .

(b) E[W ] and Var(W ) for W = X + 2Y + 2.

Given: E[X] = 2
3 , Var(X) = 4

9 , E[Y ] = 9, Var(Y ) = 9, corr(X,Y ) = 0.3.

• E[W ] = E[X] + 2E[Y ] + 2 = 2
3 + 2× 9 + 2 = 2

3 + 18 + 2 = 62
3 .

• Cov(X,Y ) = ρ
√
Var(X)

√
Var(Y ) = 0.3×

√
4
9 ×

√
9 = 0.3× 2

3 × 3 = 0.6.

∴ Var(W ) = Var(X)+ 4Var(Y )+ 4Cov(X,Y ) = 4
9 +4× 9+4× 0.6 = 4

9 +36+2.4 = 38.4+0.444 . . . ≈ 38.84.

(c) Bayesian Update: Factories A vs. B.

(i) (5 points) Probability a randomly chosen box is from A and has exactly one defective (X = 1):

Each box is A or B with prob. 1
2 . If a box is from A, p = 1

3 . Then

Pr(X = 1 | A) =

(
2

1

)(1
3

)1(2
3

)1

= 2× 1

3
× 2

3
=

4

9
.

Thus

Pr(A and X = 1) = Pr(A)× Pr(X = 1 | A) =
1

2
× 4

9
=

4

18
=

2

9
≈ 0.2222.
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(ii) (5 points) Posterior Pr(A | X = 1) if p(B) = 1
2 , p = 1

10 in B:

Pr(X = 1 | B) =

(
2

1

)( 1

10

)1( 9

10

)1

= 2× 0.1× 0.9 = 0.18.

Pr(B and X = 1) = 1
2 × 0.18 = 0.09.

Therefore,

Pr(A | X = 1) =
Pr(A, X = 1)

Pr(A, X = 1) + Pr(B, X = 1)
=

2
9

2
9 + 0.09

=
0.2222

0.2222 + 0.09
=

0.2222

0.3122
≈ 0.712.

(iii*) (*2 bonus points) Now with four factories (A,B,C,D) of unknown priors. If X = 1,

• Factory C (p = 1) always yields X = 2. So Pr(X = 1 | C) = 0.

• Factory D (p = 0) always yields X = 0. So Pr(X = 1 | D) = 0.

Hence the posterior of D is 0 if X = 1, regardless of the prior.

Problem 2: Solution (25 points)

(a) Four Scenarios (12 points).

(i) Nutritionist (3 pts)

• X = (age, weight, exercise), Y = daily protein intake.

• Regression problem (continuous Y ).

• Primarily prediction to forecast intake.

(ii) Market Analyst (3 pts)

• X = browsing habits, Y = phone plan {A,B,C}.

• Classification problem (categorical Y ).

• Goal is prediction for the new user.

(iii) Admissions Officer (3 pts)

• X = homework grades, Y = final exam score (numeric).

• Regression problem.

• Focus on inference: which assignments matter most.

(iv) Real Estate Agent (3 pts)

• X = (location, bedrooms, area, building age), Y = monthly rent.

• Regression problem.

• Goal is inference: find the factor(s) significantly affecting rent.
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(b) Model Comparison (13 points).

(i) (5 points) Evaluate predictive performance via a metric, such as MSE = 1
n

∑n
i=1

(
yi − f(xi)

)2
. A lower

MSE indicates better prediction. (Ideally we want to check on a test set too, but we cannot.)

(ii) (4 points) If Model (2) outperforms Model (1) only on training data, it might overfit. We might still

prefer Model (1) for interpretability or simpler structure.

(iii) (4 points) If Model (2) also excels on test data, it likely generalizes well. Model (1) might be chosen for

inference/interpretability or practical concerns (e.g., simpler to explain or cheaper to implement).

Problem 3: Solution (40 points + 2 bonus)

We have Y = puzzle-solving time (minutes), X1 = indicator for ≥ 2 yrs experience, X2 = memory score.

(a) Prediction (15 points).

(i) (5 points)

ŶA = 11.2− 5× (1) = 6.2, ŶB = 10− 0.6× (7) = 5.8.

(ii) (5 points) Model A: R2 = 0.50, Model B: R2 = 0.64. B is better at explaining Y ’s variance. R2 is

fraction of Y ’s variation (variance) explained by the model. Equivalently, R2 = 1− RSS
TSS .

(iii) (5 points) A model with both X1, X2 yields R2 = 0.70. This might be better, capturing both factors,

evidenced by the increase in R2. However, this is not necessarily better if overfitting, and adjusted R2

might not have increased by much, as R2 might have increased just by chance with additional predictors.

(b) Coefficients & Inference (15 points). We fit (1) Y ∼ X1 and (2) Y ∼ X1 +X2 with:

(1) Simple: β̂1 = −5, SE = 1.67, (2) Multiple: β̂1 = −1.6, SE = 1.6.

(i) (5 points)

• Simple model: t = −5
1.67 ≈ −3.0 ⇒ p ≈ 0.003 < 0.05 (significant).

• Multiple model: t = −1.6
1.6 = −1.0 ⇒ p ≈ 0.317 > 0.05 (not significant).

(ii) (5 points)

• Simple: β1 = −5 means participants with 2+ years’ experience solve the puzzle about 5 minutes

faster than X1 = 0 on average.

• Multiple: β1 = −1.6 indicates participants with 2+ years’ experience solve the puzzle about only

1.6 minutes faster than X1 = 0 on average, once short-term memory score (X2) is controlled.

(iii) (5 points) If X1 correlates with X2, omitting X2 can inflate X1’s effect by including its indirect influence

via X2. For example, people with higher memory scores may be likelier to enjoy puzzles and thus more

experience, or puzzle experience might improve memory. Controlling for X2 isolates X1’s direct effect,

thereby mitigating confounding.

(iv*) (*2 bonus points) In this model, β1 = −7 is the intercept difference at X2 = 0. Thus, at X2 fixed at 0,

participants with 2+ years’ experience solve puzzles 7 minutes faster on average than those without.
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(c) Adding More Predictors (10 points).

(i) (4 points) Y –X2 relation looks nonlinear; we can consider adding a higher-order term in X2, e.g., X
2
2 .

* Note: X1 is a dummy variable, and Y is numeric (not categorical); seeing two clusters is normal, and

classification methods (e.g., logistic) don’t apply here.

(ii) (3 points) As X3 seems uncorrelated with Y, it might not help to explain Y . Possibly skip X3.

(iii) (3 points) Although X4 seems strongly associated with Y , it also strongly correlates with X2. Including

both can cause collinearity, and we should choose only one or carefully interpret; perhaps skip X4.

Problem 4: Solution (35 points + 4 bonus)

(a) 2D Logistic Regression (20 points).

(i) (5 points) Compute p̂(xtest)

With β̂0 = −2, β̂1 = −1, β̂2 = 2, for xtest = (1, 1):

log

(
p

1− p

)
= −2 + (−1) · 1 + 2 · 1 = −1. =⇒ p =

e−1

1 + e−1
≈ 0.269 < 0.5 =⇒ ŷtest = 0.

(ii) (5 points) Decision Boundary

The given decision rule predicts ŷ = 1 if and only if

β̂0 + β̂1x1 + β̂2x2 ≥ log

(
p∗

1− p∗

)
= 0, which is equivalent to x2 ≥ − β̂1

β̂2

x1 −
β̂0

β̂2

=
1

2
x1 + 1.

In the last equality, we plugged in (β̂0, β̂1, β̂2) = (−2,−1, 2).

(iii*) (*2 bonus) Changing to (β̂0, β̂1, β̂2) = (−1,−1, 1), we now predict ŷ = 1 if and only if x2 ≥ x1 + 1.

(iv) (5 points) Confusion Matrix

Pred = 1 Pred = 0

Y = 1 35 5

Y = 0 15 45

TPR = 35
35+5 = 0.875, FPR = 15

15+45 = 0.25.

(v) (5 points) Lowering p∗ With p∗ = 0.1 vs. 0.5, more borderline cases → “1.” FP ↑, and FN ↓ .
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(b) 1D LDA (15 points). Each species has a normal distribution with the same variance but different

means, and we apply LDA to classify by weight.

(i) (4 points) Sample Means & Pooled s

Species A: {1.5, 2.5} =⇒ x̄A = 2.0. Species B: {2.0, 3.0, 4.0} =⇒ x̄B = 3.0.

Pooled covariance:

s2 =

[
(1.5− 2)2 + (2.5− 2)2

]
+
[
(2− 3)2 + (3− 3)2 + (4− 3)2

]
5− 2

=
0.5 + 2

3
=

5

6
≈ 0.8333.

(ii) (4 points) Linear Discriminants

πA = 2
5 , πB = 3

5 . Then log( 25 ) ≈ −0.916, log( 35 ) ≈ −0.511.

Thus, the linear discriminant functions in this problem reduce to:

δA(x) =
x x̄A

s2
− x̄2

A

2 s2
+ log(πA) =

12

5
(x− 1) + log

(
2

5

)
,

δB(x) =
x x̄B

s2
− x̄2

B

2 s2
+ log(πB) =

18

5

(
x− 3

2

)
+ log

(
3

5

)
.

(iii) (4 points) Predict at xnew = 2.5

From the linear discriminant functions above, we get

δA(x)− δB(x) = −6

5
x+ 3 + log

(
2

3

)
. (1)

Inserting x = 2.5, we get

δA(2.5)− δB(2.5) = −3 + 3 + log

(
2

3

)
≈ −0.405 < 0.

So classify Species B.

(iv) (3 points) Adding 4 More A’s

With additional data points, A has 2 + 4 = 6 crabs vs. B has 3, so πA = 6
9 = 0.6667, πB = 0.3333.

log( 0.66670.3333 ) = log(2) ≈ 0.693, a positive shift. Following the same steps as above in (ii)–(iii), we get

δA(2.5)− δB(2.5) = −3 + 3 + log

(
6

3

)
= log 2 ≈ 0.693 > 0.

Now we predict Species A instead of Species B.

(v*) (*2 bonus points)

Requiring Pr(A | x) ≥ p∗ > 0.5 translates to δA(x)− δB(x) ≥ log( p∗

1−p∗ ). Thus, with p∗ = 0.9,

predict Ŷ = A if and only if δA(x)− δB(x) > 2 log(3) ≈ 2.197.

Following (1) in (iii),

δA(2)− δB(2) = −6

5
× 2 + 3 + log

(
2

3

)
≈ 0.195 < 2.197.

Thus, we would classify the crab with x′
new as Species B under p∗ = 0.9 to avoid missing B crabs; note

that it would have been Species A with the original threshold p∗ = 0.5 as δA(2)− δB(2) ≈ 0.195 > 0.
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