
STA 35C Spring 2025 Midterm exam 2 solution

STA 35C Statistical Data Science III

Midterm exam 2 solution

Instructor: Dogyoon Song

Problem 1: Solution (20 points)

(a) Using more folds in K-fold CV increases computational cost.

True. Each fold requires retraining the model, so more folds means more total fits.

(b) Every point must appear at least once in each bootstrap sample.

False. Sampling with replacement can skip some points entirely, while others are duplicated.

(c) Forward stepwise can remove a predictor added earlier.

False. Standard forward stepwise only adds predictors; it doesn’t drop them once included.

(d) Lasso shrinks correlated predictors together, whereas Ridge might zero one out.

False. It’s usually Ridge that “groups” correlated predictors in similar shrinkage, while Lasso may set

one to zero and keep another.

(e) FDR at 0.05 means no false positives occur with 95% probability.

False. FDR ≤ 0.05 ensures the expected fraction of false positives is at most 5%, not that we have

zero false positives 95% of the time.

Problem 2: Solution (20 points)

(a) (6 pts) 5-fold CV vs. single split

• Advantage: 5-fold CV averages multiple train/validation splits, typically reducing the variance of the

estimated test error compared to a single split.

• Disadvantage: It is more computationally expensive (you must train a model 5 times instead of

once).

(b) (14 pts total) Comparing two models via LOOCV

We have three data points (n = 3):

(−2, 1), (0, 3), (3, 9).

(i) (10 pts) Leave-One-Out CV means: each time leave out 1 point, train on the other 2, predict the

omitted point, compute squared error, then average over all 3 folds.
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• LOOCV for Linear model f(x) = β0 + β1x.

– Fold 1: Omit (−2, 1). Train on (0, 3) and (3, 9).

∗ β1 = 9−3
3−0 = 2, β0 = 3− (2× 0) = 3.

∗ Predict omitted point (−2, 1): f̂(−2) = 3+2(−2) = 3−4 = −1, e = 1−(−1) = 2, e2 = 4.

– Fold 2: Omit (0, 3). Train on (−2, 1), (3, 9).

∗ β1 = 9−1
3−(−2) =

8
5 = 1.6, β0 = 1− 1.6× (−2) = 1 + 3.2 = 4.2.

∗ Predict omitted point (0, 3): f̂(0) = 4.2, e = 3− 4.2 = −1.2, e2 = 1.44.

– Fold 3: Omit (3, 9). Train on (−2, 1), (0, 3).

∗ β1 = 3−1
0−(−2) =

2
2 = 1, β0 = 3− (1× 0) = 3.

∗ Predict omitted point (3, 9): f̂(3) = 3 + (1× 3) = 6, e = 9− 6 = 3, e2 = 9.

So LOOCV MSE for linear model:

MSElinear =
4 + 1.44 + 9

3
=

14.44

3
= 4.8133 ≈ 4.81.

• LOOCV for Quadratic model g(x) = β0 + β1x
2.

– Fold 1: Omit (−2, 1). Train on (0, 3), (3, 9).

∗ β1 = 9−3
32−0 = 2

3 , β0 = 3− ( 23 × 0) = 3.

∗ Predict omitted point (−2, 1): ĝ(−2) = 3 + 0.6667 × 4 = 3 + 2.6667 = 5.6667, e =

1− 5.6667 = −4.6667, e2 ≈ 21.78.

– Fold 2: Omit (0, 3). Train on (−2, 1), (3, 9).

∗ β1 = 9−1
32−(−2)2 = 8

5 , β0 = 1− ( 85 × (−2)2) = − 27
5 .

∗ Predict omitted point (0, 3): ĝ(0) = −5.4 + 1.6 × 0 = −5.4, e = 3 − (−5.4) = 8.4, e2 =

70.56.

– Fold 3: Omit (3, 9). Train on (−2, 1), (0, 3).

∗ β1 = 3−1
02−(−2)2 = − 1

2 , β0 = 3− (− 1
2 × (0)2) = 3.

∗ Predict omitted point (3, 9): ĝ(3) = 3 + 0.5 × 32 = −1.5, e = 9 − (−1.5) = 10.5, e2 =

110.25.

So LOOCV MSE for quadratic:

MSEquad =
21.78 + 70.56 + 110.25

3
=

202.59

3
= 67.53 ≈ 67.53.

(ii) (4 pts)

MSElinear ≈ 4.81, MSEquad ≈ 67.53.

The linear model has a much smaller LOOCV MSE, so we select f(x) (the linear one).

Problem 3: Solution (20 points)

We have 5 flips of a coin, observed H,T, T,H, T (2 heads out of 5).

(a) (6 points) The original dataset has 2 heads, 3 tails. Thus, Pr(H) = 2/5 and Pr(T ) = 3/5. Thus, the

probability of drawing the exact same sequence (H,T, T,H, T ) is

Pr(H)× Pr(T )× Pr(T )× Pr(H)× Pr(T ) = Pr(H)2 × Pr(T )3 =

(
2

5

)2 (
3

5

)3

=
108

3125
.
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(b) (8 points) First of all, we have p̂ = 0.4 from the original sample.

We have 4 bootstrap samples of 5 flips. Observe that

p̂∗1 = 0.6, p̂∗2 = 0.6, p̂∗3 = 0.4, p̂∗4 = 0.4.

Thus, the sample standard deviation of p̂∗1, p̂
∗
2, p̂

∗
3, p̂

∗
4 is

σ̂ =

√√√√ 1

4− 1

4∑
i=1

(p̂∗i − p̄∗) =

√
4

300
≈ 0.115.

Ultimately, we can construct a 95% confidence interval via a normal approximation:

p̂± z0.975 × σ̂,

where z0.975 ≈ 1.96. Therefore, we obtain a 95% CI, approximately [0.174, 0.626].

(c) (6 points) A 95% bootstrap confidence interval means that if we repeated the entire experiment +

bootstrap procedure many times, about 95% of such intervals would contain the true p. It’s about

long-run coverage of p under repeated sampling.

Problem 4: Solution (20 points)

We have n = 11 data points, TSS = 100, and 4 predictors. The RSS table is given.

(a) (7 points) Best Subset

• For each model size k = 0, 1, 2, 3, 4, pick the subset with the smallest RSS:

k = 0 : ∅ (RSS = 100).

k = 1 : X2 (RSS = 40).

k = 2 : X1, X4 (RSS = 25).

k = 3 : X1, X3, X4 (RSS = 20).

k = 4 : (X1, X2, X3, X4) (RSS = 19).

• Here n = 11, so (n− 1) = 10. For each k, we plug in:

adjR2
k = 1− RSSk

100
× 10

11− k − 1
.

Hence:

k = 0 : RSS = 100 ⇒ R2
adj,0 = 1− 100

100
× 10

10
= 1− 1 = 0.

k = 1 : RSS = 40 ⇒ R2
adj,1 = 1− 40

100
× 10

9
= 1− 0.4× 1.1111 = 1− 0.4444 = 0.5556.

k = 2 : RSS = 25 ⇒ R2
adj,2 = 1− 0.25× 1.25 = 1− 0.3125 = 0.6875.

k = 3 : RSS = 20 ⇒ R2
adj,3 = 1− 20

100
× 10

7
= 1− 0.2× 1.4286 = 1− 0.2857 = 0.7143.

k = 4 : RSS = 19 ⇒ R2
adj,4 = 1− 19

100
× 10

6
= 1− 0.19× 1.6667 = 1− 0.3167 = 06833.
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• Then we might pick the k = 3 model (X1, X3, X4) because it has the largest R2
adj among the

k-wise best models.

(b) (7 points) Forward Stepwise Here we start from the null model (∅, RSS=100) and at each size k,

we pick only from those subsets containing the previously chosen subset. Then we compute R2
adj for

the model we get at each step, and finally pick the best among them.

• Path of forward selection:

– k = 0 : Subset is ∅ (RSS=100).

– k = 1 : Among singletons, X2 yields RSS=40 (best). So we choose (X2).

– k = 2 : From (X2), test adding X1 → 30, X3 → 35, X4 → 32.

The best is (X1, X2) with RSS=30.

– k = 3 : From (X1, X2), test adding X3 → 28 or X4 → 21.

The best is (X1, X2, X4) with RSS=21.

– k = 4 : From (X1, X2, X4), adding X3 yields RSS=19, so final is (X1, X2, X3, X4).

• Here n = 11, so (n− 1) = 10. For each k, we plug in:

adjR2
k = 1− RSSk

100
× 10

11− k − 1
.

Hence:
k = 0 : ∅, RSS = 100

⇒ R2
adj,0 = 0.

k = 1 : (X2), RSS = 40

⇒ R2
adj,1 = 1− 40

100
× 10

9
= 1− 0.4× 1.1111 = 1− 0.4444 = 0.5556.

k = 2 : (X1, X2), RSS = 30

⇒ R2
adj,2 = 1− 30

100
× 10

8
= 1− 0.30× 1.25 = 1− 0.375 = 0.625.

k = 3 : (X1, X2, X4), RSS = 22

⇒ R2
adj,3 = 1− 21

100
× 10

7
= 1− 0.21× 1.4286 = 1− 0.3000 = 0.7000.

k = 4 : (X1, X2, X3, X4), RSS = 19

⇒ R2
adj,4 = 1− 19

100
× 10

6
= 1− 0.19× 1.6667 = 1− 0.3167 = 06833.

• Then we might pick the k = 3 model (X1, X2, X4) because it has the largest R2
adj among the k-

wise best models. Note that this is different from the subset chosen via the Best Subset Selection

due to the greedy nature of Forward Stepwise Selection procedure

(c) (6 points) Advantage/Disadvantage of Backward Stepwise

• Advantage: Less expensive than enumerating all 2p subsets, provided n > p. You systematically

remove unneeded predictors.

• Disadvantage: May fail to find the global best subset if a crucial predictor was dropped early

in the sequence. Also requires n > p so you can start with the full model.
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Problem 5: Solution (20 points)

(a) (10 points) Behavior as λ increases (Ridge)

(i) Training MSE: Steadily increases (larger λ imposes more shrinkage, so the fit on training data

worsens due to underfitting).

(ii) Test MSE: often U-shaped ; at λ = 0 we might overfit, leading to high test error; at some middle

λ it’s minimized, then at very large λ it underfits.

(iii) (Squared) Bias: Steadily increases with λ (more shrinkage means systematically underestimat-

ing true effects).

(iv) Variance: Steadily decreases as λ grows (heavy shrinkage lowers the model’s sensitivity to training

noise, thereby lowering variance).

(v) Irreducible Error: Remains constant (it doesn’t depend on the model or λ).

(b) (10 points) Table with two methods (Ridge vs. Lasso)

Method A Method B

λ CV Error β̂0 β̂1 β̂2 CV Error β̂0 β̂1 β̂2

0.1 1.10 0.2 0.80 0.40 1.10 0.3 0.75 0.10

1.0 1.05 0.3 0.65 0.25 1.15 0.5 0.70 0.00

5.0 1.30 0.6 0.40 0.10 1.35 0.8 0.40 0.00

(i) Which is Lasso, which is Ridge?

• Method A never zeros out β2.

• Method B sets β̂2 = 0 for λ ≥ 1.0.

Hence, Method A is Ridge, Method B is Lasso.

(ii) Which λ to pick?

• For Ridge (A), λ = 1.0 yields the lowest CV error (1.05 vs. 1.10 or 1.30).

• For Lasso (B), λ = 0.1 is yields minimal CV error (1.10 vs. 1.15, 1.35).

• If we want a simpler model (fewer nonzero coefficients), λ ≥ 1.0 for Method B zeroes out

β2, though that raises CV error slightly (from 1.10 to 1.15 or 1.35). We might accept that if

interpretability/simplicity of the model is important.

Problem 6: Solution (20 points + 5 bonus points)

(a) (10 points)

We have a single hypothesis H0, with probabilities {p1, p2, p3, p4} in the table (left). For multiple tests

(e.g. m of them), let N1, N2, N3, N4 be the respective counts of outcomes in the right table.

(i) Often we set Pr(reject H0 | H0 true) ≤ α. In the single-test table, that means

p1
p1 + p3

≤ α ⇐⇒ p1 ≤ α
(
p1 + p3

)
.
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(ii) To control the false discovery rate (FDR) at level q, we want the expected fraction of false positives

among all rejections ≤ q. In the multiple-test table, if N1 is the total FP among the “true” nulls

and N1 +N2 is the number of rejections, then

E
[

N1

N1+N2

]
≤ q.

(b) (10 points + 5 bonus points)

You have 8 hypotheses (each at α = 0.05) with p-values

{ 0.001, 0.01, 0.02, 0.04, 0.06, 0.10, 0.15, 0.25}.

(i) No correction: We reject all hypotheses whose p-values < 0.05. Hence 0.001, 0.01, 0.02, 0.04 are

each below 0.05. So we reject 4 hypotheses: H0,1, H0,2, H0,3, H0,4.

(ii) Bonferroni correction (m = 8): The new threshold is α∗ = 0.05
8 = 0.00625. Only 0.001 < 0.00625.

So 1 rejection: H0,1.

(iii) Benjamini–Hochberg (BH) at FDR=10%: Sort the p-values:

0.001, 0.01, 0.02, 0.04, 0.06, 0.10, 0.15, 0.25.

We look for the largest j such that

p(j) ≤ q j

m
=

0.10× j

8
.

• j = 1 : check 0.001 ≤ 0.10× 1
8 = 0.0125? yes.

• j = 2 : check 0.01 ≤ 0.10× 2
8 = 0.025? yes.

• j = 3 : check 0.02 ≤ 0.10× 3
8 = 0.0375? yes.

• j = 4 : check 0.04 ≤ 0.10× 4
8 = 0.05? yes.

• j = 5 : check 0.06 ≤ 0.10× 5
8 = 0.0625? yes.

• j = 6 : check 0.10 ≤ 0.10× 6
8 = 0.075? no (0.10 > 0.075). stop.

Hence j = 5. Thus we reject p(1), . . . , p(5):

{ 0.001, 0.01, 0.02, 0.04, 0.06}.

So 5 rejections: H0,1, H0,2, H0,3, H0,4, H0,5.
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