
STA 35C Spring 2025 Practice Midterm 2 Solution

STA 35C Statistical Data Science III

Practice Midterm 2 Solution

Instructor: Dogyoon Song

Problem 1: Solution (24 points)

(1) False. A single train/validation split (one-shot approach) typically yields a higher -variance error estimate

because it relies on just one particular split of the data. In contrast, 5-fold CV averages multiple splits, usually

leading to a more stable (lower-variance) test-error estimate.

(2) True. In a bootstrap sample (size n, drawn with replacement), some original points appear multiple

times, while others are omitted; e.g., {x1, x1, x3, x5, ...}.

(3) False. Forward stepwise starts with no predictors and adds them one by one. (Starting with all predictors

and removing them is backward stepwise.)

(4) True. Because of the L1 penalty geometry, a large λ can drive some coefficients exactly to zero, effectively

performing variable selection.

(5) False. Performing many tests at α = 0.05 inflates the chance of a false positive (Type I error), not the

power.

(6) True. Overfitted models often show very low training error but degrade significantly on test or cross-

validation data, indicating poor generalization.

Problem 2: Solution (18 points)

(a) (12 points) Two-Fold CV with Four Data Points We have four points:

(x1, y1) = (2, 3), (x2, y2) = (4, 5), (x3, y3) = (7, 10), (x4, y4) = (9, 14),

split into two folds:

Fold 1: {(2, 3), (7, 10)}, Fold 2: {(4, 5), (9, 14)}.

We compare two models: - Linear: f(x) = β0 + β1 x, - Quadratic: g(x) = β0 + β1 x
2.

Linear Model

• Train on Fold 1, test on Fold 2:

β1 =
10− 3

7− 2
= 1.4, β0 = 3− 1.4× 2 = 0.2.
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Predict on (4, 5) and (9, 14):

f̂(4) = 5.8 (error = 5− 5.8 = −0.8, e2 = 0.64), f̂(9) = 12.8 (error = 14− 12.8 = 1.2, e2 = 1.44).

MSE1 = 0.64+1.44
2 = 1.04.

• Train on Fold 2, test on Fold 1:

β1 =
14− 5

9− 4
= 1.8, β0 = 5− 1.8× 4 = −2.2.

Predict on (2, 3) and (7, 10):

f̂(2) = 1.4 (e = 1.6, e2 = 2.56), f̂(7) = 10.4 (e = −0.4, e2 = 0.16).

MSE2 = 2.56+0.16
2 = 1.36.

Hence, 2-fold CV MSE for the linear model is

1.04+1.36
2 = 1.20.

Quadratic Model

• Train on Fold 1, test on Fold 2:

3 = β0 + 4β1, 10 = β0 + 49β1 =⇒ β1 = 7
45 , β0 ≈ 2.376.

Predict (4, 5), (9, 14):

ĝ(4) = 4.872, e2 = (5− 4.872)2 = 0.01638, ĝ(9) = 15.012, e2 = (14− 15.012)2 = 1.02414.

MSE1 ≈ 0.52026.

• Train on Fold 2, test on Fold 1:

5 = β0 + 16β1, 14 = β0 + 81β1 =⇒ β1 = 9
65 , β0 ≈ 2.78464.

Predict (2, 3), (7, 10):

ĝ(2) = 3.33848, e2 = 0.11457, ĝ(7) = 9.56918, e2 = 0.18560.

MSE2 = 0.11457+0.18560
2 = 0.150085.

Hence, 2-fold CV MSE for the quadratic model is

0.52026+0.150085
2 ≈ 0.335.

Conclusion Since 1.20 > 0.335, the quadratic model is preferred based on 2-fold CV.

(b) (6 points) k-Fold CV vs. LOOCV

• Advantages of k-fold:

– Less computation than LOOCV (fewer total fits).

– Typically lower variance in the estimated error than a single train/test split.

• Disadvantages:

– Slightly more bias than LOOCV, since each training set is smaller than n− 1.

– Must decide on the hyperparameter k; results can vary if k is too small or large.
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Problem 3: Solution (20 points)

We have 5 data points (not explicitly shown), plus 3 bootstrap samples. Our tasks involve computing sample

means and using them to form a confidence interval.

(a) (8 points) Sample Means - Let the original sample be { 2, 3, 5, 7, 8}. Then

µ̂orig =
2 + 3 + 5 + 7 + 8

5
= 5.0.

- Bootstrap 1: The table shows { 2, 2, 5, 7, 8} (top to bottom in column 2).

µ̂B1
=

2 + 2 + 5 + 7 + 8

5
= 4.8.

- Bootstrap 2: { 3, 5, 7, 8, 8} etc. Suppose that column 3 reads {3, 5, 7, 8, 8} (the middle row is 5, etc.). Then

µ̂B2
=

3 + 5 + 7 + 8 + 8

5
= 6.2.

- Bootstrap 3: { 2, 3, 5, 5, 8} yields

µ̂B3
=

2 + 3 + 5 + 5 + 8

5
= 4.6.

(b) (6 points) Std. Dev. of the Four Means We have four mean values:

µ̂orig = 5.0, µ̂B1
= 4.8, µ̂B2

= 6.2, µ̂B3
= 4.6.

Compute their standard deviation:

m̄ =
5.0 + 4.8 + 6.2 + 4.6

4
= 5.15,

sµ̂ =

√
(5.0− 5.15)2 + (4.8− 5.15)2 + (6.2− 5.15)2 + (4.6− 5.15)2

4− 1
≈ 0.719.

(c) (6 points) 95% CI for µ

• Percentile approach: If you had many bootstraps, you’d sort their means and pick the 2.5% and

97.5% quantiles as the confidence bounds. With only 3 bootstraps, we can’t truly do percentile method

reliably.

• Normal approximation approach:

µ̂orig ± z0.975 × sµ̂ ≈ 5.0± 1.96× 0.71.

That might give an interval roughly (3.59, 6.41).

Problem 4: Solution (20 points)

(a) (8 points) Best Subset.

• k = 0: Choose ∅ (RSS=40.0).

• k = 1: Minimizes RSS at X1 (RSS=10.0).

• k = 2: Minimizes RSS at X1, X2 (RSS=8.0).

• k = 3: Full model X1, X2, X3 (RSS=7.5).
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(b) (6 points) Forward & Backward Stepwise.

(i) Forward:

• Start with ∅. Among {X1}, {X2}, {X3}, best is X1 (RSS=10.0).

• Then among {X1, X2}, {X1, X3}, best is (X1, X2) (RSS=8.0).

• Checking (X1, X2, X3) is next: RSS=7.5, so final includes all three if we keep going until no improve-

ment is meaningful.

(ii) Backward:

• Start with (X1, X2, X3) (RSS=7.5).

• Removing X3 ⇒ (X1, X2) RSS=8.0, removing X2 ⇒ (X1, X3) RSS=12.0, removing X1 ⇒ (X2, X3)

RSS=14.5. The best removal is X3.

• Now we have (X1, X2). Could remove X1 ⇒ RSS = 15, or X2 ⇒ RSS = 10; best removal is X2, and

we move to (X1).

(c) (6 points) Forward Stepwise vs. Best Subset.

• Advantage (Forward): Much faster in high p settings, not enumerating all 2p subsets.

• Drawback: It can miss the overall best subset since it never revisits earlier decisions once it adds

predictors.

Problem 5: Solution (20 points)

(a) (10 points) Ridge vs. Lasso Coefficients

(i) Method A is Lasso, because it sets β̂2 = 0. Method B is Ridge, which shrinks β2 to 1.2 rather than zero.

(ii) Lasso can drive some coefficients exactly to zero, indicating X2 is either less important or strongly correlated

with X1. Ridge merely reduces β2 to 1.2, implying X2 still has some effect but is penalized away from its

OLS value.

(b) (10 points) CV for Different λ Values

Ridge Lasso

λ 0.1 1.0 5.0 0.1 1.0 5.0

CV Error 0.90 0.88 0.93 0.85 0.86 0.95

(i) Ridge: The best λ is 1.0 (CV error 0.88). Lasso: The best λ is 0.1 (CV error 0.85).

(ii) At Lasso λ = 1.0, 2 of 10 predictors are set to zero (CV error 0.86). At λ = 0.1, none are zero (CV error

0.85). A difference of 0.01 in error may be negligible, so the simpler model (fewer predictors) might be

preferable unless the absolute lowest test error is critical.
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Problem 6: Solution (18 points + 2 bonus)

(a) (10 points) 10 p-values, no correction vs. Bonferroni.

{ 0.001, 0.01, 0.02, 0.03, 0.04, 0.10, 0.15, 0.20, 0.25, 0.50}

• No Correction: All p-values below 0.05 are declared significant, so we reject H0,1 through H0,5 (5

rejections).

• Bonferroni: Adjusted α∗ = 0.05
10 = 0.005. Then only p = 0.001 < 0.005 is significant, so 1 rejection.

• Comment: Bonferroni is more conservative, drastically reducing the number of discoveries.

(b) (8 points) 5 p-values, BH at FDR=5%.

{ 0.002, 0.01, 0.04, 0.09, 0.20}.

(i) Sort them: 0.002, 0.01, 0.04, 0.09, 0.20.

(ii) BH critical values for each p(i) are α i
m = 0.05× i

5 = 0.01i.

i = 1 : 0.01; i = 2 : 0.02; i = 3 : 0.03; i = 4 : 0.04; i = 5 : 0.05.

(iii) Compare in ascending order:

p(1) = 0.002 < 0.01 (reject),

p(2) = 0.01 < 0.02 (reject),

p(3) = 0.04 > 0.03 (stop).

Hence we reject H0,1 and H0,2 but not the rest.

(c*) (2 bonus points) FDR vs. FWER. FDR controls the fraction of false positives among the rejected

hypotheses, typically more powerful when testing many hypotheses. FWER (Bonferroni/Holm) aims to keep

the probability of any false positive near zero, so it may be too conservative in large-scale testing. FDR is

generally preferred in scenarios like genomics with thousands of tests, where some false positives are tolerable,

but we want to control their proportion.
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