
STA 35C Spring 2025 Practice Final Solution

STA 35C Statistical Data Science III

Practice Midterm 2 Solution

Instructor: Dogyoon Song

Problem 1: (16 points total). Multiple-choice

(a) Probability, conditional probability, Bayes’ rule

■ If events A and B are independent, then Pr(A | B) = Pr(A).

■ Bayes’ rule states Pr(A | B) =
Pr(B | A) Pr(A)

Pr(B)
.

□ For disjoint events A and B, Pr(A ∩B) = Pr(A) Pr(B).

□ Pr(A ∪B) = Pr(A) + Pr(B), regardless of whether A and B are disjoint.

Explanations:

• The first two statements are correct. If A and B are independent, conditional probability equals

Pr(A). Also, Bayes’ rule is exactly Pr(A | B) = Pr(B|A) Pr(A)
Pr(B) .

• The third is incorrect, because for disjoint events Pr(A∩B) = 0 ̸= Pr(A) Pr(B) in general (unless

one is zero).

• The fourth is incorrect, because Pr(A ∪ B) = Pr(A) + Pr(B) − Pr(A ∩ B); you only sum them

directly if A and B are disjoint.

(b) Linear regression: R2

■ R2 measures the proportion of variability in Y explained by the model.

□ R2 can take on values between −1 and 1.

■ If R2 = 1, then the model’s fitted values match the actual response perfectly.

□ A large R2 always guarantees excellent out-of-sample performance.

Explanations:

• R2 measures the fraction of Y ’s variance explained by the model, and R2 = 1 implies a perfect fit

on the training data.

• R2 = 1− RSS
TSS , and thus1 takes value in [0, 1] because 0 ≤ RSS ≤ TSS.

• A large R2 does not guarantee good generalization, because the model could be overfitted.

1This is out of the scope of this course, but R2 can indeed be outside [0, 1] under certain circumstances (e.g., no intercept or

adjusted R2). Anyways, saying it’s between −1 and 1 is imprecise.
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(c) Classification thresholds & errors

□ Increasing the decision threshold p∗ typically increases the false positive rate.

□ A false negative occurs when the actual class is 0 but we predict 1.

□ Setting p∗ = 0.5 always optimizes both sensitivity and specificity.

■ Lowering p∗ generally increases the number of predicted positives.

Explanations:

• Increasing p∗ typically reduces false positives (so that option is incorrect).

• A false negative occurs if the true class is 1 but we predict 0 (so that statement is incorrect).

• p∗ = 0.5 is a common default threshold but doesn’t guarantee an optimal tradeoff for all problems

(so that is incorrect).

• Lowering p∗ indeed predicts ‘1’ more frequently, increasing predicted positives.

(d) Best subset selection

■ Best subset selection fits all possible subsets of predictors of each size to find the best subset.

□ It always returns the model with the lowest test error among all subsets.

■ It can suffer from high computational cost if the number of predictors is large.

■ It may choose a different best model size than forward stepwise selection.

Explanations:

• By definition, best subset selection enumerates all subsets at each size.

• It identifies the best training-fit subset, not necessarily the lowest test error (unless we do a separate

test to confirm). Even if we choose the best subset using cross-validation, lowest validation error

does not necessarily guarantee lowest test error.

• It can be expensive for large p (since 2p subsets).

• It might produce a different best model size than forward stepwise, since stepwise is a greedy proce-

dure.

(e) Resampling methods: Bootstrap

□ Typically the bootstrap procedure repeatedly samples without replacement from the original data.

□ In each bootstrap sample of size n, all original observations must appear at least once.

■ The bootstrap can be used to estimate the uncertainty (standard error) of an estimator.

□ A single bootstrap sample is guaranteed to provide lower variance than the original sample.

Explanations:

• Bootstrap sampling is done with replacement to imitate i.i.d. sampling, not without.

• Not all points must appear; some may appear multiple times while some may not appear at all.

• A key use of bootstrap is estimating variability (e.g., standard errors, confidence intervals).

• A single bootstrap sample does not guarantee any variance reduction.
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(f) Regularization: Lasso

■ Lasso uses an ℓ1-penalty on the regression coefficients and can set some coefficients exactly to zero.

■ Increasing the penalty parameter λ shrinks coefficients toward zero.

□ Lasso always provides lower test error than ordinary least squares.

■ If λ = 0, Lasso reduces to the usual least squares solution.

Explanations:

• Lasso uses the ℓ1 penalty and can drive some coefficients exactly to zero.

• Higher λ means stronger shrinkage.

• Lasso does not always outperform OLS (it often helps, but not guaranteed).

• If λ = 0, it is identical to least squares.

(g) Regression splines: Degree-3 spline

■ A degree-3 spline is a piecewise cubic function.

■ It is continuous up to its second derivative at each knot.

□ It must have a continuous third derivative at each knot.

■ “Natural splines” are degree-3 splines with additional boundary constraints.

Explanations:

• A degree-3 spline is piecewise cubic with continuity in up to the second derivative at each knot.

• We do not require continuity of the third derivative.

• Natural splines have extra boundary constraints that reduce spurious wiggles at the extremes.

(h) Clustering

□ Clustering is a supervised learning task.

□ In clustering, each observation has a numeric response Y used to form clusters.

■ k-means and hierarchical clustering are two common approaches.

□ Clustering can only be done with at most two features per observation.

Explanations:

• Clustering is unsupervised, so the first is false.

• We do not rely on a numeric response for clustering (it’s unlabeled).

• k-means and hierarchical are indeed two standard clustering approaches.

• Clustering can be done in higher dimensions as well (not just 2D).
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Problem 2: (24 points). True/False with Justification

(a) “If the first principal component accounts for most of the variation in the predictor variables X, then it

must also be the single best predictor of the response Y .”

False. The first principal component maximizes variance in X, not necessarily correlation with Y or

predictive ability for Y .

(b) “When using cross-validation, having more folds (e.g., k = 10 instead of k = 5) always guarantees a lower

test error.”

False. While more folds can reduce bias of the CV estimate, it does not guarantee a lower actual test

error or that it always outperforms fewer folds.

(c) “In Lasso regression, all highly correlated predictors are shrunk equally toward zero.”

False. Lasso can treat correlated predictors differently, often zeroing out one while retaining another,

unlike Ridge which tends to shrink correlated predictors more uniformly.

(d) “Lowering the decision threshold p∗ in a logistic model will generally increase both the false positive rate

and the true positive rate.”

True. With a lower threshold, we label more observations as class 1, thus catching more true positives

but also increasing false positives.

(e) “A high training R2 guarantees that the model will also generalize well to new data.”

False. Overfitting can inflate training R2 without ensuring good out-of-sample performance.

(f) “The main purpose of the bootstrap is to reduce the bias of an estimator, rather than to assess variability

or build confidence intervals.”

False. The key purpose of the bootstrap is typically to estimate variability (e.g., standard errors, CIs).

Bias can be addressed in some cases, but it’s not the main goal.

(g) “When performing clustering, labeled data are critical for computing within-cluster variance.”

False. Clustering is an unsupervised method that does not require labels; the variance measure uses just

the feature values.

(h) “Benjamini-Hochberg procedure can control the family-wise error rate (FWER) when testing multiple

hypotheses.”

False. Benjamini-Hochberg controls the false discovery rate (FDR), not the FWER.

Problem 3: (20 points total). Statistical Learning

(a) (8 points). Supervised vs. Unsupervised Learning

• Supervised learning uses labeled data (X,Y ) to build a predictive or explanatory model; e.g.

linear regression to predict house prices.

• Unsupervised learning uses unlabeled data (X) to discover structure, e.g. clustering customers.

The main difference is the presence or absence of labeled responses.
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(b) (6 points). Training Error vs. Test Error

• Training error measures fit on the training data, while test error measures out-of-sample gener-

alization on the new, unseen test data.

• In the figure, typically the red curve is the test error, which first decreases as the model becomes

more flexible, then eventually increases due to overfitting.

• The bias-variance tradeoff says more flexible models reduce bias but increase variance, and there’s

an optimal point balancing them.

(c) (6 points). Cross-Validation

• Cross-validation partitions the training data into folds, using one fold at a time as a validation set

and averaging performance.

• By treating the held-out portion of training data as a surrogate test data, cross-validation simulates

how the model might perform on new, unseen data and provides an estimate of test error.

• It assumes the training data are representative of the broader data distribution, so that left-out folds

approximate a test set.

Problem 4: (40 points total). Regression

(a) (10 points).

(i) (5 points) Least squares for Y = β0 + β1X1 + β2X2 typically means minimizing

n∑
i=1

(
Yi − β0 − β1Xi,1 − β2Xi,2

)2
.

In practice, we solve ∂
∂βj

= 0 for j = 0, 1, 2, or interpret visually as finding the plane that best fits

(X1, X2, Y ) in 3D space, which minimizes the sum of squared residuals (=vertical deviation of the

datapoints from the plane).

(ii) (5 points) With β̂0 = −3, β̂1 = 5, β̂2 = 2, predicting at (1, 2):

Ŷ = −3 + 5× 1 + 2× 2 = −3 + 5 + 4 = 6.

(b) (10 points).

(i) (5 points) Interpret β1 in multiple regression as the average effect of X1 on Y while holding X2 fixed.

In the simpler model Y = β0 + β1X1, β1 is just the overall slope of X1 without controlling for other

variables.

(ii) (5 points) Multiple vs. simple regression interpretation may differ if X1 and X2 are correlated.

If X2 strongly influences Y and is correlated with X1, omitting X2 can create a confounding effect. In

a binary X2 scenario (treatment vs. control) illustrated in the figure, controlling for X2yields separate

lines for each group with a negative slope; however, ignoring X2 mixes the two groups and might distort

the slope of X1 in a simple regression model to be positive. This can happen because the influence of

X2 on Y is marginalized and is falsely attributed to X1 through the chain X1 −X2 − Y . In contrast,

β1 in multiple regression only captures the direct effect of X1 on Y , holding X2 fixed.
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(c) (10 points).

(i) (5 points) Polynomial terms in X1: They let the model capture nonlinearity in X1’s relationship

with Y , beyond a single straight slope.

(ii) (5 points) Linear vs. cubic fit: A straight line may underfit if the data curve, while a degree-

3 polynomial can bend to fit more complex patterns. Generally, cubic fits reduce bias (=increase

flexibility) but can increase variance if data are limited, so there is a bias-variance tradeoff.

(d) (10 points).

(i) (5 points) Degree-3 spline constraints: at each knot cj , ensure:

• continuity of the function itself:

α0 + α1c1 + α2c
2
1 + α3c

3
1 = β0 + β1c1 + β2c

2
1 + β3c

3
1,

β0 + β1c2 + β2c
2
2 + β3c

3
2 = γ0 + γ1c2 + γ2c

2
2 + γ3c

3
2,

α4 = β4 = γ4.

• continuity of the first derivative:

α1 + 2α2c1 + 3α3c
2
1 = β1c1 + 2β2c1 + 3β3c

2
1,

β1 + 2β2c2 + 3β3c
2
2 = γ1 + 2γ2c2 + 3γ3c

2
2.

• continuity of the second derivative:

2α2 + 6α3c1 = β2 + 6β3c1,

2β2 + 6β3c2 = γ2 + 6γ3c2.

(ii) (5 points) Natural cubic spline vs. single degree-3 polynomial: A single polynomial can behave

poorly far from the data center, whereas a natural spline imposes boundary constraints that keep the

function more stable at the edges, reducing erratic extrapolation and sometimes lowering degrees of

freedom. However, in the middle (where data are more abundant), a natural cubic spline retains similar,

or even higher, flexibility to a degree-3 polynomial.

Problem 5: (40 points + 3 bonus). Classification

(a) (10 points). Two-Dimensional Logistic Regression

(i) (5 points) We have

log
( p(x)

1− p(x)

)
= −2− 1x1 + 2x2.

For xtest = (1, 1), the linear predictor (log odds) is

η = −2− 1× 1 + 2× 1 = −2− 1 + 2 = −1.

Thus p̂ = e−1

1+e−1 ≈ 0.269. Since 0.269 < 0.5, we predict class 0.

(ii) (5 points) The decision boundary sets η = 0 =⇒ −2− x1 + 2x2 = 0 =⇒ x2 = x1

2 + 1. Plot a

straight line with slope 1/2, intercept at x2 = 1 when x1 = 0. One side (above line) is Ŷ = 1, the

other side is Ŷ = 0.
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(b) (10 points). LDA in One Dimension

(i) (5 points) Computing the Discriminant Functions and Predicting at X = 2.

Let Class 0 data be {−2, 0, 1, 2} and Class 1 be {3, 4, 6}. We estimate the prior for Class 0 as π̂0 = 4
7

and for Class 1 as π̂1 = 3
7 .

• Sample means:

x̄0 =
−2 + 0 + 1 + 2

4
=

1

4
= 0.25, x̄1 =

3 + 4 + 6

3
=

13

3
≈ 4.33.

• Pooled variance σ̂2:

σ̂2 =

∑
x∈Class 0(x− x̄0)

2 +
∑

x∈Class 1(x− x̄1)
2

n0 + n1 − 2
.

We have 4 points in Class 0 (n0 = 4) and 3 points in Class 1 (n1 = 3):

Class 0: x− x̄0 = {−2.25, −0.25, 0.75, 1.75}

=⇒
∑

x∈Class 0

(x− x̄0)
2 = 5.0625 + 0.0625 + 0.5625 + 3.0625 = 8.75.

Class 1: x− x̄1 = {−1.33, −0.33, 1.67},

=⇒
∑

x∈Class 1

(x− x̄0)
2 ≈ 1.77 + 0.11 + 2.79 = 4.67.

Total SSE ≈ 8.75 + 4.67 = 13.42.

Hence,

σ̂2 =
13.42

4 + 3− 2
=

13.42

5
≈ 2.68, and thus, σ̂ ≈ 1.64.

The linear discriminant function in one dimension is often written as

δk(x) =
x x̄k − 1

2 x̄
2
k

σ̂2
+ ln(π̂k),

ignoring any constant terms that do not depend on k or x.

Predicting at x = 2: Numerically, δ0(2) > δ1(2); hence LDA predicts Class 0 at x = 2.

**Additional remark:** Notice that

δ1(x)− δ0(x) =
x̄1 − x̄0

σ̂2

(
x− x̄0 + x̄1

2

)
+ log

(
π̂1

π̂0

)
.

Since 2 is closer to x̄0 = 0.25 than to x̄1 = 4.33, and π̂0 > π̂1, we can see that δ1(x)− δ0(x) < 0 and

conclude LDA would predict Class 0 at x = 2, without estimating σ̂.

(ii) (5 points) Why LDA is Generative; Explicit PDF Computation.

LDA assumes each class has a Gaussian distribution with class-specific mean and a common variance

σ̂2, plus prior π̂k = Pr(Class = k). For one-dimensional x, the class-k PDF is

p(x | y = k) =
1√
2π σ̂2

exp
(
− (x− x̄k)

2

2 σ̂2

)
,

and each class is chosen with probability π̂k. That is,

p(x, y = k) = π̂k · p(x | y = k).
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For a new sample (2, 1):

p
(
x = 2, y = 1

)
= π1 ·

1√
2π σ̂2

exp
(
− (2− x̄1)

2

2 σ̂2

)
.

We compare these to the analogous expression for class 0 to classify a new point. Thus, LDA is

generative because it models how x is generated by first picking a class (with prior π̂k), then drawing

x from that class’s normal distribution.

(c) (10 points). Changing Threshold p∗ or Data Imbalance

(i) (5 points) If p∗ < 0.5, we classify ‘1’ more easily. For instance, in medical screening we might want

fewer false negatives, so we set p∗ < 0.5. Conversely, if we want fewer false positives, we raise p∗.

(ii) (5 points) Adding three times more data from one class affects both logistic regression (since it

updates the log-odds fit) and LDA (since priors and possibly means shift). Both boundaries can

move, unless one explicitly fixes prior probabilities or weights classes.

(d) (10 points + 3 bonus). Confusion Matrix and Changing Threshold

(i) (5 points) The confusion matrix:

Pred = 1 Pred = 0

Y = 1 45 5

Y = 0 10 40

So

TP = 45, FN = 5, FP = 10, TN = 40.

TPR =
TP

TP + FN
=

45

50
= 0.90, FPR =

FP

FP + TN
=

10

50
= 0.20.

(ii) (5 points) Lowering p∗ from 0.5 to 0.1 increases the number of predicted positives, so we expect

more false positives but fewer false negatives (since we predict 1 more often).

(iii*) (3 bonus points*) To minimize FPR while keeping TPR ≥ 90%, we look at the ROC curve. We

choose the threshold corresponding to a point on the ROC curve with TPR ≥ 0.90 but the smallest

possible FPR. This is typically found by scanning thresholds until TPR hits 0.90, then picking the

threshold that yields the smallest FPR among those points.

Problem 6: (20 points) Inference & Hypothesis Testing

(a) (7 points) Simple Linear Regression Significance

(i) (4 points) We have coefficient estimate = 4, std. error = 1.5. Then

t =
4

1.5
≈ 2.67.

Checking the table, t = 2.67 is between 2.5 and 3.0, so two-sided p-value is between 0.0124 and

0.0027, definitely < 0.05. Thus it is significant.

(ii) (3 points) This implies X1 is significantly associated with Y ; i.e., there is strong evidence that

β1 ̸= 0 in this simple linear model.
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(b) (7 points) Bootstrapping a Complex Parameter

(i) (4 points) Let the original estimate of the parameter be T̂ = 10. We have six bootstrap estimates

{7, 8, 10, 11, 12, 15}. We compute their sample standard deviation:

sboot =

√√√√ 1

6− 1

6∑
i=1

(
T̂i − T boot

)2 ≈ 2.88.

A normal-approximation 95% CI is

T̂ ± z0.975 × sboot, where z0.975 ≈ 1.96.

Thus

95% CI ≈ 10 ± 1.96× 2.88 = (4.35, 15.65).

(ii) (3 points) The “95%” means that if we repeated the entire bootstrap process many times, about

95% of such CIs would contain the true parameter T . It is a statement about long-run coverage

under repeated sampling from the same data-generating process.

(c) (6 points) Multiple Testing and Bonferroni

(i) (3 points) The family-wise error rate (FWER) is the probability of making at least one Type

I error among the m tests. Symbolically,

FWER = Pr
(
at least one H0 is true but rejected

)
= Pr

(
N1 ≥ 1

)
.

(ii) (3 points) The Bonferroni correction sets each individual test’s significance level to α/m, en-

suring the overall chance of any false rejection is at most α. Hence, FWER ≤ α.

Problem 7: (20 points). Model Selection & PCA

(a) (8 points) Best Subset vs. PCA

• Best subset selection: We have a response Y and p predictors, and we systematically search (or

evaluate) all subsets of predictors to find which best fits Y .

• PCA: We have a set of features X (potentially high-dimensional), and we find new orthogonal direc-

tions of maximal variance. PCA does not use Y at all—it is unsupervised, aiming for dimensionality

reduction or feature extraction.

• Contrast: Best subset yields a discrete subset of original predictors for modeling Y , whereas PCA

yields a lower-dimensional subspace spanned by linear combinations of X. BSS is typically chosen via

a model-comparison criterion (adjusted R2, cross-validation etc.), while PCA focuses on maximizing

variance in X retained after projection.

(b) (6 points) 2D Dataset and Directional Variance

(i) (3 points) Directional variance along v = (1, 1): For the 2D points {(1, 2), (2, 3), (3, 5), (4, 6), (5, 5)},
first compute (xi + yi) for each, then scale by 1/

√
2. We get:{

3√
2
, 5√

2
, 8√

2
, 10√

2
, 10√

2

}
.

Numerically, their sample variance is about 4.85. Hence

Varv(X ) ≈ 4.85.
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(ii) (3 points) Comparing to PC1 variance: The first principal component is the direction that

maximizes variance. Therefore, the variance along v = (1, 1) can be less than or equal to (if v

happens to align with PC1) the variance along PC1, but never strictly guaranteed to exceed it.

(c) (6 points) PCA with 7 variables (variances: 24, 12, 7, 3, 2, 1, 1)

(i) (3 points) The total variance is 24 + 12+ 7+ 3+ 2+ 1+ 1 = 50. Summation of the top 3 principal

components is 24 + 12 + 7 = 43. Hence, the cumulative proportion is 43/50 = 0.86, i.e. 86%.

(ii) (3 points) If we keep too few PCs, we risk losing important information. If we keep too many, we

might keep noise and hurt interpretability. We typically use a scree plot, trying to find an ”elbow”

where the slope abruptly changes, suggesting much reduced marginal utility of adding further PCs,

or a cumulative PVE to guide the number of components to retain.

Problem 8: (20 points). Clustering

(a) (7 points). Main Ideas of Clustering

(i) (4 points) The main goal is to group unlabeled points into clusters so that points within each cluster

are “similar” (e.g., smaller pairwise distances in the feature space), while points in different clusters

are “dissimilar.” This is unsupervised, meaning no response labels are used.

(ii) (3 points) Clustering vs. Classification: Classification uses labeled data to learn a decision

rule for predicting labels of new observations. Clustering uses unlabeled data to discover inherent

structure (clusters) in X only.

(b) (7 points). 2-means on (1, 1), (2, 0), (8, 6), (9, 9)

(i) (4 points) A natural partition places (1, 1) and (2, 0) together, with centroid
(
1.5, 0.5

)
, and (8, 6)

and (9, 9) together, with centroid
(
8.5, 7.5

)
. Each pair is close in feature space.

(ii) (3 points) k-means might not always yield that exact solution because it is a heuristic iterative

algorithm, which can get stuck at local minima depending on initialization. Different initial seeds

might produce a different partition.

(c) (6 points). Hierarchical Clustering

(i) (3 points) With complete linkage, we first merge (1, 1) and (2, 0) at distance
√
2 ≈ 1.41. Next,

(8, 6) merges with (9, 9) at distance
√
10 ≈ 3.16. Finally, these two subclusters merge at the maximum

distance among cross-pairs, ≈ 11.40. To form two clusters, we “cut” the dendrogram below height

11.40 (and above
√
10), obtaining the same clusters as above.

(ii) (3 points) k-means vs. hierarchical: k-means is typically faster for large n (O(n) vs O(n2))

but requires specifying the number of clusters k in advance, and can converge to local minima.

Hierarchical clustering doesn’t need k fixed in advance (you can “cut” the dendrogram at various

levels) but is more computationally expensive for big n and cannot reverse merges once done.
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