STA 35C: Statistical Data Science III

Lecture 1: Introduction and Overview

Dogyoon Song

Spring 2025, UC Davis

Agenda

- Course overview
- Brief intro to statistical learning
- Course logistics

What is statistical data science?

- Statistics: The study of collecting, analyzing, and drawing conclusions from data.
- Data science:
 - Interdisciplinary: statistical thinking + programming + databases
 - Emphasize real-world data wrangling, practical computing, and applications (science, business, sports, government, etc.)
- **STA 35 series**: Introductory data science courses from a statistical perspective, with an emphasis on computing.
 - STA 35A: Intro to statistics (probability, distributions, confidence intervals, hypothesis testing ,etc.)
 - STA 35B: Advanced R functionalities + additional statistical methods (linear regression, ANOVA, permutation tests, etc.)
 - STA 35C: Fundamentals of statistical learning methods
 - what the key ideas are, how and when to apply them, plus understanding their limitations

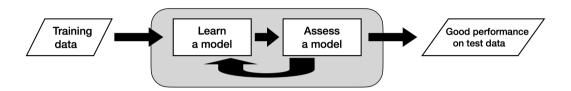
What is statistical learning?

Definition: A set of tools for understanding data and making informed predictions

• Examples:

- Identifying critical disease risk factors from large patient records
- Predicting whether an event will occur (e.g., credit default, septic shock)
- Classifying medical images or tissue cells (e.g., benign vs. malignant tumors)
- Recognizing and localizing objects in images (e.g., for autonomous vehicles)
- Evaluating impacts of new legislation or predicting unemployment rates
- Modeling relationships among many variables to gain practical insights (e.g., which marketing strategies drive sales)
- ...

Supervised vs. unsupervised learning


Supervised learning

- Setup: We have measurements of an outcome Y and predictors (features) X
- Goals: Make accurate predictions of Y, or understand which X affects Y and how
- Examples:
 - Regression: Forecast a product's sales next month
 - Classification: Predict if a customer will default on a loan

Unsupervised learning

- **Setup**: We only have features X, without any outcome variable
- Goals: Discover hidden patterns or groupings in the data
- Examples:
 - Dimension reduction: Extract a small subset or combine features for compression
 - Clustering: Cluster customers by purchasing behavior

Statistical learning and STA 35C

- Core idea: Learn a model from training data, evaluate its performance, and refine it
 - Aim for good predictions or insights on new, unseen data
 - · Rely on probability and statistical principles to measure uncertainty and avoid overfitting
- In STA 35C, you'll learn the fundamentals of these methods
 - When and how to use different supervised or unsupervised learning methods
 - How to assess and interpret models (cross-validation, bootstrap, model selection)
 - Our focus is on first principles; we do not cover advanced machine learning techniques (e.g., deep neural networks, large language models)

Course content & prerequisites

Course content:

- 1. More on probability
- 2. Intro to supervised learning
 - Basic concepts
 - Regression
 - Classification
- 3. Model assessment, selection, and inference
 - Cross-validation and the bootstrap
 - Model selection and regularization
 - Simultaneous inference
- 4. Intro to unsupervised learning
 - Dimension reduction and PCA
 - Clustering

Prerequisite(s):

- STA 035B (C- or better)
- MAT 016B or 017B or 021B (C- or better)

These requirements are strict.

 If you don't meet prerequisites, please submit a petition ASAP

Course logistics

- Instructor: Dogyoon Song
 - E-mail: dgsong@ucdavis.edu
 - Office hours: Wed, 4-5pm (or by appointment) at MSB 4220
- TA: Soobin Kim
 - E-mail: sbbkim@ucdavis.edu
 - Office hours: Mon/Thu, 1-2pm (location: TBA)
- Lectures: Monday, Wednesday and Friday, 12:10-1:00 PM
- Lab/Discussions: Tuesday (run by Soobin Kim)
- Online platforms
 - Course webpage: Lecture notes, homework, supplementary materials, etc.
 - Canvas: Lab materials, homework submission (via Gradescope), solutions and grades
 - Piazza: Announcements and discussion
 - E-mail: Questions related to private matters only (do not send me messages on Canvas)

Grading

- Homework: 30%
 - Six homework assignments, excluding "Homework 0"
 - Assigned on Wednesday morning, due next Tuesday 11:59 pm PT
 - One homework with the lowest score can be dropped
 - No late homework accepted for any reason
- Midterm exams: 30%
 - Two in-class midterms (Fri, April 25 & Fri, May 16)
 - The lower can be dropped
 - No make-up exams offered
- Final exam: 40%
 - Friday, June 6, 1:00-3:00 PM
- Participation: up to 3% extra

See syllabus for full details and additional information (textbook, course policies, etc.)

"Homework 0" for self-assessment

- Complete the "Homework 0" for your self-assessment ASAP if you haven't yet
- It reviews key topics from STA 35A/B, and briefly check on your familiarity with R
- This will not be collected or graded, and no solutions will be provided.
- If you find any part challenging or need help with R or RStudio (e.g., installation), please review your STA 35A/35B notes, textbooks, or online resources, and **attend discussion sections tomorrow** (Tue, April 1, 2025).
- If you need additional help, please feel free to attend office hours and consult with the instructor or TA during the first week

Software: R and RStudio

- Data science teams often use a mix of languages, such as R, Python, or Julia.
- **R** is a free, open-source **statistical programming language** for data analysis:
 - Interactive environment for data wrangling, modeling, and visualization
 - Highly extensible via packages
- Basic interaction with R happens in the **R console** (terminal/command line).
- **RStudio** is a popular Integrated Development Environment (IDE) that:
 - Builds on top of the R Console
 - Provides menus, a file explorer, an editor, and other graphical tools
 - Streamlines the data science workflow

Computing setup

R programming:

- In this course, you will use R for homework and labs.
- Lab/discussion sections and TA office hours are the best places to get help.

• Where to run R:

- Use UC Davis JupyterHub, which has RStudio set up
- Alternatively, you can install R and RStudio on your own computer

Computer access:

- You will need regluar, reliable access to a computer with a working browser or an up-to-date R/RStudio installation
- If this is a problem, please let us know immediately—resources are available to help

Lab/discussion section:

- Held in TLC 2212, where computers are available
- You may also bring your own laptop (please charge it beforehand)

Where we are headed

Throughout the course:

- · Learn key ideas of regression, classification, clustering, and more
- Practice implementing methods and interpreting results
- Assess when each method is or isn't appropriate

Immediate next steps:

- Refresh core probability concepts (from STA 35A/B)
- Deepen understanding of conditional probability and briefly explore the Bayesian ideas

• Before next lecture:

- Complete "Homework 0" and seek help if needed
- Ensure you have access to R and RStudio