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Agenda1

• Probability basics

• Conditional probability

• Bayes’ theorem

• Random variables

• Joint, marginal, and conditional distributions

1Most of today’s topics were covered in STA 35A; see Lectures 13–16
2 / 17

https://xhtai.github.io/statdatasci/


Motivation: Statistical learning recap
Recall the goals of statistical learning:

• Predict Y given X (learn a function f : X → Y )
• Identify patterns in data X

Standard workflow:

Key challenge:
• We aim for good predictions or insights on new, unseen data
• How should we assess a model, given that training data ̸= test data?
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Motivation: Why probability?

Probabilistic tools and viewpoints offer a formal way to manage and quantify uncertainty

In particular,
• Issue/Need: Training data ̸= test data

• Remedy: Assume training and test data are randomly drawn from same distribution

• Issue/Need: Uncertainty in prediction
• Remedy: Model Y as a random variable, and predict Y conditioned on X

• Issue/Need: Choosing among many models
• Remedy: Update our belief about the “best model” based on observed data

We will discuss these aspects in more detail throughout the course

Today: We review probability concepts
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Probability in everyday examples

• Coin toss
• Possible outcomes are Head or Tail; each has probability 0.5

• Die roll
• Possible outcomes {1, 2, . . . , 6}; each has probability 1/6

• Y chromosomes in the US childbirths2

• About 51.2% of births are to babies with Y chromosomes, and 48.8% do not
• The probability of having a baby with a Y chromosome is 0.512

• Commute time
• An average commute might take 20 minutes, but it varies with traffic, weather, etc.

• Subjective probability
• You may personally estimate the likelihood of a stock price rising or falling, based on

your own analysis or expert opinions
• This kind of probability reflects beliefs rather than strict long-run frequencies

2Source: CDC National Vital Statistics Reports, Births: Final Data for 2023
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https://www.cdc.gov/nchs/data/nvsr/nvsr74/nvsr74-1.pdf


Formalizing probability: Sample space and events

• Sample space: the set of all possible outcomes, often denoted by Ω
• e.g., {H, T}, {1, 2, 3, 4, 5, 6}

• Event: a subset of Ω
• e.g., ∅, {H}, {T} {H, T}, {6}, {1, 2}, {2, 4, 6}

• Probability3: a map P that assigns a number in [0, 1] to each event such that
• P(Ω) = 1;
• For disjoint events A1, A2, . . . , P

( ⋃
i Ai

)
=

∑
i P(Ai)

• Simply put, if A ∩ B = ∅, then P(A ∪ B) = P(A) + P(B)
• Example: A1 = {1, 2}, A2 = {6}

3A formal, mathematically rigorous definition of probability measure is beyond the scope of STA 35C
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Basic properties of probability

All the following properties can be derived from the two axioms:

• P(Ac) = 1 − P(A) where Ac = Ω \ A

• P(∅) = 0

• P(A ∪ B) = P(A) + P(B) − P(A ∩ B)

• P(B \ A) = P(B) − P(A ∩ B)

• If A ⊆ B, then P(A) ≤ P(B)

It is often useful to visualize and verify these using a Venn diagram
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A quick exercise: a die roll example

Setup:

• Ω = {1, 2, 3, 4, 5, 6} and P({1}) = P({2}) = · · · = P({6}) = 1/6

• A = {2, 3, 5} (prime faces)

• B = {2, 4, 6} (even faces)

Questions:

• Draw a Venn diagram to visualize Ω, A and B

• Identify A ∪ B, A ∩ B and A \ B on the Venn diagram

• Compute P(A ∪ B), P(A ∩ B), and P(A \ B)
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Conditional probability

Probability an event will occur given that another event has occurred

The conditional probability of A given B is

P(A|B) =


P(A∩B)

P(B) if P(B) > 0,

0 if P(B) = 0.

Example: Compare P(A) vs P(A|B) in the die roll example on the previous slide

Some rules for conditional probability:
• (Multiplication rule) P(A ∩ B) = P(B)P(A|B)
• (Law of total probability) P(A) = P(A|B)P(B) + P(A|Bc)P(Bc)

*Note: Marginal probability refers to “unconditional” probability
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Independence

Events A and B are independent if P(A ∩ B) = P(A)P(B)
• Recall that P(A ∩ B) = P(B)P(A|B)
• Thus, if A and B are independent, then P(A|B) = P(A)
• That is, knowing the outcome of B provides no useful information about the

outcome of A and vice versa

Example: Flipping a coin and rolling a die
• Knowing the coin was heads does not help determine the outcome of a die roll

Counter-example: Seeing someone with an umbrella and the day being rainy are not
independent

• If we see someone with an umbrella, it is more likely to be a rainy day
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Bayes’ theorem

Often, we know P(B|A) when what we really want is P(A|B)
• A: cause, B: effect
• A: having cancer, B: positive mammogram screening result
• A: “good” prediction function, B: observed data

Assuming that we know (1) marginal probabilities of A and (2) conditional probabilities of
“A (cause) → B (effect),” we want to “update our belief” about the cause, A,
conditioning on observed effect B

Bayes’ theorem states that

P(A|B) = P(A ∩ B)
P(B) = P(B|A)P(A)

P(B) = P(B|A)P(A)
P(B|A)P(A) + P(B|Ac)P(Ac)
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Bayes’ theorem: Examples

Example: Let A=cancer and B=positive screening result
• Suppose P(A) = 0.01
• P(B|A) = 0.8 (true positive)
• P(B|Ac) = 0.1 (false positive; positive screening though a person does not have

cancer)

What is P(A|B)? How does observing B affect our “belief” on A?

Food for thought: Let A=a model (or a set of models) and B=observed data

Example: A coin gambler’s bet on a fair coin (Bern(1/2)) vs biased (Bern(1))
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Random variables

• A random variable4 X : Ω → R maps a possible outcome to a number
• Instead of enumerating all outcomes, we can track a number

Figure: Random variable example: outcome of tossing a coin5

4Again, a mathematically rigorous definition is beyond the scope of STA 35C
5Source: https://medium.com/jun94-devpblog/prob-stats-1-random-variable-483c45242b3c
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https://medium.com/jun94-devpblog/prob-stats-1-random-variable-483c45242b3c


Distribution of a random variable

How do we describe the probability that a random variable takes certain values?

• When X is a discrete random variable, its probability mass function (PMF)
pX : R → [0, 1] satisfies

pX (x) = P(X = x)

• When X is a continuous random variable, its probability density function (PDF)
fX : R → R+ satisfies

P[a ≤ X ≤ b] =
∫ b

a
fX (x) dx

• In either case, its cumulative distribution function (CDF) FX : R → [0, 1] is
defined by

FX (x) := P(X ≤ x)

Examples: Bernoulli, uniform, normal (=Gaussian), ...
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Expectation, variance, and covariance

Distributions can be complex; we might want summaries of location, spread, etc.

• The expected value of a random variable X is the average outcome you can expect:
• Discrete: E[X ] =

∑
x x · pX (x)

• Continuous: E[X ] =
∫

x · fX (x) dx

• The variance of a random variable X is the “spread” around the mean:
• Var(X ) = E

[(
X − E[X ]

)2]
• Alternative formula: Var(X ) = E[X 2] − E[X ]2

• The covariance between X and Y measures their “joint variability” around means:
• Cov(X , Y ) = E

[(
X − E[X ]

)(
Y − E[Y ]

)]
• Correlation coefficient: ρ(X , Y ) := Cov(X ,Y )√

Var(X)
√

Var(Y )
∈ [−1, 1]

Examples: (1) symmetric distribution on {−1, 0, 1}; (2) 2x2 contingency table
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Some properties of expectation and variance

Expectation: Let X , Y be random variables and a, b ∈ R.
• E[a] = a
• E[bX ] = b · E[X ]
• E[X + Y ] = E[X ] + E[Y ]

Variance: Let X , Y be random variables and a, b ∈ R.
• Var(a) = 0
• Var(bX ) = b2 · Var(X )
• Var(X + Y ) = Var(X ) + Var(Y ) + 2Cov(X , Y )

Example: a mixture of two Gaussians
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Distribution of multiple random variables

Let X , Y be discrete random variables

Joint distribution:
• The joint PMF of X and Y satisfies pX ,Y (x , y) = P(X = x & Y = y)
• The joint CDF of X and Y is defined by FX ,Y (x , y) = P(X ≤ x & Y ≤ y)

Marginal distribution:
• The marginal PMF of X satisfies

pX (x) =
∑
y ′

pX ,Y (x , y ′)

Conditional distribution:
• The conditional PMF of X given Y satisfies

pX |Y (x |y) = pX ,Y (x , y)
pY (y) = pX ,Y (x , y)∑

x ′ pX ,Y (x ′, y)

Question: Can you write marginal PDF and conditional PDF using joint PDF similarly?
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