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Agenda

In the last lecture, we reviewed:
® Probability basics
e Conditional probability & Bayes’ theorem
® Random variables
® Joint, marginal, and conditional distributions

Today, we will cover:
® More on probability with examples

® Statistical learning

2/19



Example: Expectation and variance

Example 1: Coin toss

- o p if head (x = 1),
px(x) = p(X = x) = {1 —p if tail (x =0).

® FExpectation: ® Variance:
E[X] =3 x p(x) Var(X) = E[(X — E[X])’]
0. (1-p)41-p :;(X*p) - p(x)
=p =(=p)* (1=p)+(1—p)° p
=p(1-p)

® Alternatively:

Var(X) = E[X*] = E[X]* = p— p* = p(1 - p)
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Example: Expectation and variance

Example 2: Gaussian random variable X ~ N(0, o2)

V2mo?

® FExpectation: ® Variance:

E[X] = /°° x - fx(x) dx

:/_Ooox-fx(x) dx+/0°ox~fx(x) dx

- /OC(—X +x) - fx(x) dx
Oo

g

2

—2a

Var(X) = E[X?] — E[X]?

—ax’

2

/ x* - fx(x) dx

= 02/ fx(x) dx = o°P(X € R)

oo

—o0

-+

® |ntegration by parts: for a# 0 (a = ﬁ)

o0 2
2 —
/ x‘e ¥ dx =
— 00

oo

1
2a |

a2
e ™ dx
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Example: Sum of random variables

Example 3: A mixture of two Gaussians
® Let X ~ Bern(p), i.e., a Bernoulli random variable such that

{p if head (x = 1),

PXC=31 5 if tail (x = 0),

® Let Y ~ N(0,0?), i.e., a Gaussian random variable with

1 _A
fr(y) = g2 e 2°
We have seen that Question: Compute
e E[X] = p and Var(X) = p(1 — p) ® E[cX + Y]
® E[Y] =0 and Var(Y) = o2 ® Var(cX +Y)
Suppose that Cov(X,Y) =0 Question: Draw the distribution of X + Y?

5/19



Example: Variance and covariance

Example 4: Consider a 2x2 contingency table as follows (a € [-1,1])

X Y -1 1 Marginal prob of X
1 (1-a)/4 (1+a)/4 12
-1 (1+a)/4 (1-a)/4 12
Marginal prob of Y 1/2 1/2
® FExpectation of X: ® (Covariance between X and Y':
1 1 _
BIX] = "% pel) = (-1 1 +1:1 o0 Cov(X, Y) = E[(X — E[X])(Y ~ E[Y])
* = xy- Pxv(x,y)
® Variance of X: e
1 _1+a B 1—a
Var(X) = E[X?] = (-1)*- 5+ 1?.2=1 2 2
=a
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Example: Variance and covariance

Example 4: Consider a 2x2 contingency table as follows (a € [-1,1])

e E[X]=E[Y]=0
® Var(X) = Var(Y) =1
® Cov(X,Y)=a
Thus,
Cov(X,Y)

P Nar(X)/Var(Y)

X Y -1 1 Marginal prob of X
1 (1-a)/4 (1+a)/4 1/2
-1 (1+a)/4 (1-a)/4 12
Marginal prob of Y 1/2 1/2

® Q: Are X and Y independent??

® Yes if and only if a=10

® |f X and Y are independent, then
px,y =0

® However, px,y = 0 does not imply
X and Y are independent

?Random variables X, Y are independent if
Px v (A, B) = Px(A)Py(B) for all A,B
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Example: Variance and covariance

Example 4: Consider a 2x2 contingency table as follows (a € [—1,1])

X Y -1 1 Marginal prob of X
1 (1-a)/4 (1+a)/4 1/2
-1 (1+a)/4 (1-a)/4 12
Marginal prob of Y 12 12
® Q: Is observing X useful in predicting Y? ® Q: How would you estimate a, or sign(a), from

data {(x1,y1),. .., (Xn, ¥)}?
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Statistical learning

Let's begin with some examples

Sales
Sales
Sales

50 100 200 300 o 10 0 20 40 60 80 100
v Radio Newspaper
FIgU re: The Advertising data set shows Sales of a product in 200 different markets against

advertising budgets for three media: TV, Radio, and Newspaper [JWHT21, Figure 2.1].

Want to know if there is an association between sales (Y') and advertising (X)
For example, can we predict Sales using TV, Radio, and Newspaper?
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Statistical learning

Let's begin with some examples

e
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Figu re:. The simulated Income data set displays Income of 30 individuals
as a function of Years of education and Seniority [JWHT21, Figure 2.3].

Want to know if there is an association between income (Y) and education/seniority (X)

For example, can we understand how Years of education affect Income?
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Statistical learning: Terminology and notation

Response (dependent variable) Y:

® The output variable we want to predict (e.g., Sales)

Predictors (independent variables, features) X:
® Input variables used to predict Y (e.g., TV, Radio, Newspaper)
® Often multiple predictors are collectively denoted by X = (X1, X2,...,X;)

Assumption: There is some relationship between Y and X
Y = f(X) +e,
where

® f is some fixed but unknown function.

® ¢ is a random error term, which has mean zero, and is independent of X.

Goal: Estimate f
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Why estimate 7

Predicting Y:

® We often have input variables X but not the corresponding output Y

e With an estimate #, we can predict Y at new points X = x via ¥ = f(x)

® Fxample: X = patient's blood sample, Y = risk of a disease or adverse reactions
Identifying relevant predictors:

® We can determine which predictors among Xi,..., X, are important in explaining Y,
and which are irrelevant

® Example: Seniority and years of education heavily affect income, but marital status
typically does not

Understanding how X affects Y:

e |[f f is not too complex, we can interpret how each predictor affects Y
® Fxample: Measuring how an increase in TV advertising changes sales
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Two main reasons to estimate f

Prediction
® Objective: Make accurate prediction of Y given X
e 7 can be treated as a “black box,” prioritizing predictive accuracy over exact form
® Fxamples:

® Which individuals, based on demographics, are likely to respond positively to a mailer?
® Based on blood sample, is a patient at high risk of a severe adverse drug reaction?

Inference

® Objective: Understand the association between Y and X
e We cannot treat f as a black box; we need to know its exact form
® Fxamples:

® Which media are linked to higher sales?
® Which medium generates the largest boost in sales?
® How much of an increase in sales is attributable to a given increase in TV advertising?
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What is the smallest prediction error we can hope for?

The predictive accuracy of Y = ?(X) depends on two sources of error

e Reducible error: If f is not a perfect estimate of f, any inaccuracy introduces error

e Irreducible error: Even if f = f, there is variability from €

® ¢ may include unmeasured variables important for predicting Y.
® ¢ may also reflect inherent fluctuations (e.g., day-to-day or manufacturing variation).

Mathematically,

(X) = f(X) = €)?]

(X) = F(X))?] = 2E[(F(X) = (X)) - )] + E[€*]
) — f(X)) + Var(e)

reducible irreducible

Goal: Estimate f that (1) minimizes the reducible error and (2) is interpretable
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How do we estimate f?

® We will explore multiple approaches to estimate f from data
o We use training data {(x1,y1), ..., (Xn, yn)} to fit f

e Our goal: ensure f generalizes well to future data (X, Y)

® Most statistical learning methods are either parametric or non-parametric

® Parametric (model-based) approach:
® Step 1: Assume a functional form (model) of f (e.g., linear Y = a + 8X)
® Step 2: Use the training data to fit model parameters

® Non-parametric approach:

® Make no explicit assumption about the functional form of f
® Instead, seek an f that fits data closely while remaining sufficiently smooth
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lllustration of parametric methods

Suppose that Y = f(X) + € where f(x) = x3

Parametric methods: e.g., polynomial regression 7(x) = Zj'j:o BjxI

Parametric: Polynomial degree 1 Parametric: Polynomial degree 3
o Daa
4 — True function

--- 3-degree fit

Parametric: Polynomial degree 10

(a) Linear regression (deg 1) (b) Polynomial regression (deg 3) (c) Polynomial regression (deg 10)

® (Good) Estimating parameters Sy, ..., 84 is easier than estimating an arbitrary function
® (Bad) The assumed model may not match the true functional form of f
° Choosing a more flexible model can reduce bias but risks overfitting
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lllustration of non-parametric methods

Suppose that Y = f(X) + € where f(x) = x3

Non-parametric methods: e.g., k-nearest neighbors (k-NN)

(Nonparametric: k-NN (k=3) Nonparametric: k-NN on subsample (k=3, n=5) Parametric: Linear Regression on subsample (n=5)

o Data

b
——- KN (=3, full data)

- Linear fit (subsample)

(a) k-nearest neighbor (k = 3) (b) k-NN (k = 3, subsampled) (c) Linear regression (subsampled)

® (Good) Highly flexible; avoids the danger of using a wrong functional form
® (Bad) Requires more data to accurately estimate f & interpretation is more difficult
° Greater flexibility can increase the overfitting risk & computation can explode at query
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Tradeoff: Prediction accuracy vs. model interpretability

High

| Subset Selection
Lasso

Interpretability

Least Squares

Generalized Additive Models
Trees

Bagging, Boosting

Support Vector Machines
Deep Learning

T
Low

Figure: A representation of the tradeoff between
flexibility and interpretability [JWHT21, Figure 2.7].

Flexibility

T
High

While more flexible methods can capture a much wider range of shapes to estimate f, we
may still prefer more restrictive approaches because of:

¢ Interpretability: Restrictive (parametric) models are typically easier to interpret
e Sample complexity: Flexible models often requires more observations
® Risk of overfitting: Very flexible methods can fit noise € rather than true f
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