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Agenda

In the last lecture, we reviewed:
• Probability basics
• Conditional probability & Bayes’ theorem
• Random variables
• Joint, marginal, and conditional distributions

Today, we will cover:
• More on probability with examples
• Statistical learning
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Example: Expectation and variance
Example 1: Coin toss

pX (x) = p(X = x) =
{

p if head (x = 1),
1 − p if tail (x = 0).

• Expectation:

E[X ] =
∑

x

x · p(x)

= 0 · (1 − p) + 1 · p
= p

• Variance:

Var(X) = E
[
(X − E[X ])2]

=
∑

x

(
x − p

)2 · p(x)

= (−p)2 · (1 − p) + (1 − p)2 · p
= p(1 − p)

• Alternatively:

Var(X) = E[X 2] − E[X ]2 = p − p2 = p(1 − p)
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Example: Expectation and variance
Example 2: Gaussian random variable X ∼ N(0, σ2)

fX (x) = 1√
2πσ2

e− x2
2σ2

• Expectation:

E[X ] =
∫ ∞

−∞
x · fX (x) dx

=
∫ 0

−∞
x · fX (x) dx +

∫ ∞

0
x · fX (x) dx

=
∫ ∞

0
(−x + x) · fX (x) dx

= 0

• Variance:

Var(X) = E[X 2] − E[X ]2 =
∫ ∞

−∞
x2 · fX (x) dx

= σ2
∫ ∞

−∞
fX (x) dx = σ2P(X ∈ R)

= σ2

• Integration by parts: for a ̸= 0 (a = 1
2σ2 ),∫ ∞

−∞
x2e−ax2

dx = x
−2a e−ax2∣∣∞

−∞
+ 1

2a

∫ ∞

−∞
e−ax2

dx
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Example: Sum of random variables
Example 3: A mixture of two Gaussians

• Let X ∼ Bern(p), i.e., a Bernoulli random variable such that

pX (x) =
{

p if head (x = 1),
1 − p if tail (x = 0).

• Let Y ∼ N(0, σ2), i.e., a Gaussian random variable with

fY (y) = 1√
2πσ2

e− y2

2σ2

We have seen that
• E[X ] = p and Var(X ) = p(1 − p)
• E[Y ] = 0 and Var(Y ) = σ2

Suppose that Cov(X , Y ) = 0

Question: Compute
• E[cX + Y ]
• Var(cX + Y )

Question: Draw the distribution of X + Y ?
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Example: Variance and covariance
Example 4: Consider a 2x2 contingency table as follows (a ∈ [−1, 1])

• Expectation of X:

E[X ] =
∑

x

x · pX (x) = (−1) · 1
2 + 1 · 1

2 = 0

• Variance of X:

Var(X) = E[X 2] = (−1)2 · 1
2 + 12 · 1

2 = 1

• Covariance between X and Y :

Cov(X , Y ) = E[(X − E[X ])(Y − E[Y ])]

=
∑
x,y

xy · PX ,Y (x , y)

= 1 + a
2 − 1 − a

2
= a
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Example: Variance and covariance
Example 4: Consider a 2x2 contingency table as follows (a ∈ [−1, 1])

• E[X ] = E[Y ] = 0
• Var(X) = Var(Y ) = 1
• Cov(X , Y ) = a

Thus,

ρX ,Y = Cov(X , Y )√
Var(X)

√
Var(Y )

= a

• Q: Are X and Y independenta?
• Yes if and only if a = 0
• If X and Y are independent, then

ρX ,Y = 0
• However, ρX ,Y = 0 does not imply

X and Y are independent

aRandom variables X , Y are independent if
PX ,Y (A, B) = PX (A)PY (B) for all A, B
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Example: Variance and covariance

Example 4: Consider a 2x2 contingency table as follows (a ∈ [−1, 1])

• Q: Is observing X useful in predicting Y ? • Q: How would you estimate a, or sign(a), from
data {(x1, y1), . . . , (xn, yn)}?
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Statistical learning

Let’s begin with some examples

Figure: The Advertising data set shows Sales of a product in 200 different markets against
advertising budgets for three media: TV, Radio, and Newspaper [JWHT21, Figure 2.1].

Want to know if there is an association between sales (Y ) and advertising (X )
For example, can we predict Sales using TV, Radio, and Newspaper?
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Statistical learning

Let’s begin with some examples

Figure: The simulated Income data set displays Income of 30 individuals
as a function of Years of education and Seniority [JWHT21, Figure 2.3].

Want to know if there is an association between income (Y ) and education/seniority (X )
For example, can we understand how Years of education affect Income?
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Statistical learning: Terminology and notation
Response (dependent variable) Y :

• The output variable we want to predict (e.g., Sales)

Predictors (independent variables, features) X :
• Input variables used to predict Y (e.g., TV, Radio, Newspaper)
• Often multiple predictors are collectively denoted by X = (X1, X2, . . . , Xp)

Assumption: There is some relationship between Y and X

Y = f (X ) + ϵ,

where
• f is some fixed but unknown function.
• ϵ is a random error term, which has mean zero, and is independent of X .

Goal: Estimate f
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Why estimate f ?

Predicting Y :
• We often have input variables X but not the corresponding output Y
• With an estimate f̂ , we can predict Y at new points X = x via Ŷ = f̂ (x)
• Example: X = patient’s blood sample, Y = risk of a disease or adverse reactions

Identifying relevant predictors:
• We can determine which predictors among X1, . . . , Xp are important in explaining Y ,

and which are irrelevant
• Example: Seniority and years of education heavily affect income, but marital status

typically does not

Understanding how X affects Y :
• If f is not too complex, we can interpret how each predictor affects Y
• Example: Measuring how an increase in TV advertising changes sales
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Two main reasons to estimate f

Prediction
• Objective: Make accurate prediction of Y given X
• f̂ can be treated as a “black box,” prioritizing predictive accuracy over exact form
• Examples:

• Which individuals, based on demographics, are likely to respond positively to a mailer?
• Based on blood sample, is a patient at high risk of a severe adverse drug reaction?

Inference
• Objective: Understand the association between Y and X
• We cannot treat f̂ as a black box; we need to know its exact form
• Examples:

• Which media are linked to higher sales?
• Which medium generates the largest boost in sales?
• How much of an increase in sales is attributable to a given increase in TV advertising?
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What is the smallest prediction error we can hope for?
The predictive accuracy of Ŷ = f̂ (X ) depends on two sources of error

• Reducible error: If f̂ is not a perfect estimate of f , any inaccuracy introduces error
• Irreducible error: Even if f̂ = f , there is variability from ϵ

• ϵ may include unmeasured variables important for predicting Y .
• ϵ may also reflect inherent fluctuations (e.g., day-to-day or manufacturing variation).

Mathematically,

E(Ŷ − Y )2 = E
[
(f̂ (X ) − f (X ) − ϵ)2]

= E
[
(f̂ (X ) − f (X ))2]

− 2E
[
(f̂ (X ) − f (X )) · ϵ)2]

+ E[ϵ2]

=
(
f̂ (X ) − f (X )

)2︸ ︷︷ ︸
reducible

+ Var(ϵ)︸ ︷︷ ︸
irreducible

Goal: Estimate f that (1) minimizes the reducible error and (2) is interpretable
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How do we estimate f ?

• We will explore multiple approaches to estimate f from data

• We use training data {(x1, y1), . . . , (xn, yn)} to fit f̂

• Our goal: ensure f̂ generalizes well to future data (X , Y )

• Most statistical learning methods are either parametric or non-parametric
• Parametric (model-based) approach:

• Step 1: Assume a functional form (model) of f (e.g., linear Y = α + βX)
• Step 2: Use the training data to fit model parameters

• Non-parametric approach:
• Make no explicit assumption about the functional form of f
• Instead, seek an f̂ that fits data closely while remaining sufficiently smooth
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Illustration of parametric methods
Suppose that Y = f (X ) + ϵ where f (x) = 1

4x3

Parametric methods: e.g., polynomial regression f̂ (x) =
∑d

j=0 βjx j

(a) Linear regression (deg 1) (b) Polynomial regression (deg 3) (c) Polynomial regression (deg 10)

• (Good) Estimating parameters β0, . . . , βd is easier than estimating an arbitrary function f
• (Bad) The assumed model may not match the true functional form of f
• (Ugly) Choosing a more flexible model can reduce bias but risks overfitting
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Illustration of non-parametric methods
Suppose that Y = f (X ) + ϵ where f (x) = 1

4x3

Non-parametric methods: e.g., k-nearest neighbors (k-NN)

(a) k-nearest neighbor (k = 3) (b) k-NN (k = 3, subsampled) (c) Linear regression (subsampled)

• (Good) Highly flexible; avoids the danger of using a wrong functional form
• (Bad) Requires more data to accurately estimate f & interpretation is more difficult
• (Ugly) Greater flexibility can increase the overfitting risk & computation can explode at query
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Tradeoff: Prediction accuracy vs. model interpretability

Figure: A representation of the tradeoff between
flexibility and interpretability [JWHT21, Figure 2.7].

While more flexible methods can capture a much wider range of shapes to estimate f , we
may still prefer more restrictive approaches because of:

• Interpretability: Restrictive (parametric) models are typically easier to interpret
• Sample complexity: Flexible models often requires more observations
• Risk of overfitting: Very flexible methods can fit noise ϵ rather than true f
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