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Agenda

Statistical learning:
• Definition: A set of tools for understanding data and making informed predictions
• Goal: Estimate a function f : X → Y that

(1) minimizes the reducible error f̂ (X ) − f (X ), and
(2) is interpretable

• Methodologies typically fall under parametric or nonparametric approaches

Today: We begin exploring concrete methods. Specifically, we’ll discuss:
• Categorizing statistical learning problems
• (Linear) Regression
• Simple linear regression
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Supervised vs. unsupervised learning
Most statistical learning problems fall into two categories: supervised or unsupervised

In supervised learning:
• Each predictor observation xi is accompanied by a response yi
• “Supervised” because the responses guide (supervise) the analysis
• Many classical statistical learning methods operate in the supervised learning domain

• Example: linear regression, logistic regression, support vector machine, etc.

In unsupervised learning:
• We have observations xi but no response yi
• “Unsupervised” because there is no response to guide the analysis
• Often used to explore relationships among observations or variables

• Example: Cluster analysis, dimension reduction, etc.

Sometimes, whether an analysis is supervised or unsupervised is less clear-cut
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Illustration: Supervised vs. unsupervised learning

Figure: Supervised vs. unsupervised learning
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Regression vs. classification

Variables can be quantitative or qualitative (categorical):
• Quantitative variables take numeric values
• Qualitative variables belong to one of K different classes

Depending on whether the response is quantitative or qualitative:
• Problems with a quantitative response are called regression problems
• Problems with a qualitative response are called classification problems

However, this distinction is not always crisp (e.g., linear vs. logistic regression)

Whether predictors are qualitative or quantitative is generally considered less important
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Illustration: Regression vs. classification

Figure: Regression vs. classification
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Regression: What do we want to do with this?

Regression problems are supervised learning problems with a quantitative response

Typical questions we want to address via regression include:
• Is there any relationship between X and Y ?
• How strong is it? (How much of Y is explained by X?)
• How large is the association? (How does Y change per unit change in X?)
• How accurately can we predict Y given X?
• Is the relationship linear?

With multiple predictors, we can also ask (in future lectures):
• Which X are associated with Y ?
• Are there interactions among X?
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Simple linear regression

Simple linear regression predicts Y from a single variable X , assuming an approximately
linear relationship between X and Y

Mathematically, we assume
Y = β0 + β1X + ϵ,

• Model parameters: β0 (intercept), β1 (slope) are fixed, unknown constants
• ϵ is an error term

We often say we regress Y on X

Once we have estimated β̂0 and β̂1 from training data, we can predict

ŷ = β̂0 + β̂1x
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Example

Figure: The Advertising data set shows Sales of a product in 200 different markets against
advertising budgets for three media: TV, Radio, and Newspaper [JWHT21, Figure 2.1].
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Estimating the coefficients: Least squares
In practice, β0 and β1 are unknown and must be estimated from data

(x1, y1), (x,y2), . . . , (xn, yn).

We want the fitted line β̂0 + β̂1x to be close to the true line β0 + β1x

The most common approach involves the least squares criterion:
• The Residual sum of squares (RSS) is defined as

RSS =
n∑

i=1

(
ŷi − yi)2 =

n∑
i=1

(
β̂0 + β̂1xi − yi

)2

• The least squares approach chooses β̂0 and β̂1 to minimize the RSS
• The solutions are

β̂1 =
∑n

i=1(xi − x̄)(yi − ȳ)∑n
i=1(xi − x̄)2 and β̂0 = ȳ − β̂1x̄

where ȳ := 1
n

∑n
i=1 yi and x̄ := 1

n
∑n

i=1 xi
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Pop-up quiz: Least squares coefficients

Dataset: Three observations:

(x1, y1) = (1, 2), (x2, y2) = (2, 3), (x3, y3) = (3, 6).

Question: What are the estimated slope β̂1 and intercept β̂0?
Hints (partial sums to speed up):

x̄ = 2, ȳ = 2 + 3 + 6
3 = 3.667,

∑
(xi − x̄)2 = 2,

∑
(xi − x̄)(yi − ȳ) = 4.

Multiple-choice answers:
a) β̂1 = 2, β̂0 = −0.333
b) β̂1 = 1.5, β̂0 = 1
c) β̂1 = 2, β̂0 = 0
d) β̂1 = 3, β̂0 = −2
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Properties of the least squares estimator

(β̂0, β̂1) estimate (β0, β1) using data, so they need not be the same

Figure: Least squares coefficient estimates from 100 data points. Red: population
regression line, Blue: least squares line, Light blue: ten separate least squares lines
[JWHT21, Figure 3.3].
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Properties of the least squares estimator (cont’d)

Unbiasedness: β̂0 and β̂1 are unbiased estimators of β0 and β1
• E[β̂0] = β0 and E[β̂1] = β1
• If we repeat the least squares regression using new samples from the same

population, then their average converges to the population regression line

Sampling distribution: Nevertheless, we only have one dataset!
• We care about how far β̂0, β̂1 can deviate from their expected values
• Under certain assumptions1, the standard errors of β̂0 and β̂1 are:

SE(β̂0)2 = σ2
[

1
n + x̄2∑n

i=1(xi − x̄)2

]
and SE(β̂1)2 = σ2∑n

i=1(xi − x̄)2

where σ2 = Var(ϵ), which is typically unknown and has to be estimated
1For these to be strictly valid, we must assume ϵi for all i have variance σ2 and are uncorrelated
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Inference about the model parameters

Usually, we estimate σ2 = Var(ϵ) using the residual standard error (RSE):

σ̂ = RSE =
√

RSS
n − 2

where RSS =
∑n

i=1
(
ŷi − yi)2 =

∑n
i=1

(
β̂0 + β̂1xi − yi

)2

Confidence Intervals: Standard errors can be used to compute confidence intervals
• A 95% confidence interval of βi is approximately β̂i ± 1.96 · SE(β̂i)
• There is approximately a 95% chance that the (random) interval[

β̂i − 1.96 · SE(β̂i), β̂i + 1.96 · SE(β̂i)
]

cotains the true value of βi
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Inference about the model parameters (cont’d)

Hypothesis Testing: Standard errors can also be used for hypothesis tests on β0 or β1
• A common test:

H0 : β1 = 0 (no relationship) vs. H1 : β1 ̸= 0 (some relationship).
• Compute a t-statistic and compare to a t-distribution w/ (n − 2) degrees of freedom:

t = β̂1 − 0
SE(β̂1)

Figure: t-distribution (image from Wikipedia).
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Pop-up quiz: Confidence interval / hypothesis test

Let’s use the same dataset as before:
(1, 2), (2, 3), (3, 6),

We found β̂1 = 2 and β̂0 = −0.333; also observe that
∑

(xi − x̄)2 = 2

1) Residual standard error: We have n = 3, so n − 2 = 1. The RSS is

RSS =
3∑

i=1

(yi − ŷi )2 = 0.666 . . . (≈ 2
3 ) =⇒ σ̂ =

√
RSS
n − 2 =?

2) Standard error of β̂1: SE(β̂1) =
√

σ̂2∑
(xi −x̄)2 =?

3) Hypothesis test: H0 : β1 = 0 vs. H1 : β1 ̸= 0. What is the t-statistic t = β̂1−0
SE(β̂1) =?

Multiple-choice answers:
A) σ̂ ≈ 0.82, SE(β̂1) ≈ 0.58, t ≈ 3.46.

B) σ̂ ≈ 1.0, SE(β̂1) ≈ 0.5, t ≈ 2.0.

C) σ̂ ≈ 0.58, SE(β̂1) ≈ 0.82, t ≈ 0.71.

D) σ̂ ≈ 0.50, SE(β̂1) ≈ 0.25, t ≈ 8.0.
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Assessing the accuracy of the model

The quality of a linear fit is typically assessed using RSE or the R2 statistic
• Residual standard error (RSE): “average deviation of Y from the regression line”

RSE =
√

RSS
n − 2 =

√√√√ 1
n − 2

n∑
i=1

(yi − ŷi)2,

which is an estimate of the standard deviation of ϵ

• The R2: “the proportion of variance in Y explained by X”

R2 = TSS − RSS
TSS = 1 − RSS

TSS

where TSS =
∑n

i=1(yi − ȳ)2 is the total sum of squares (TSS)
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The R2 statistic

The R2 ranges from 0 to 1, and is independent of the scale of Y
• R2 near 1 indicates most variability in Y is explained by the linear regression model
• R2 near 0 indicates little variability is explained

• e.g,. the linear model assumption is wrong or the error variance σ2 is large

Recall the (sample) correlation:

Ĉor(X , Y ) =
∑n

i=1(xi − x̄)(yi − ȳ)√∑n
i=1(xi − x̄)2

√∑n
i=1(yi − ȳ)2

• In simple linear regression, R2 = r2, where r = Cor(X , Y )
• This equality does not hold in multiple linear regression
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Wrap-up

Simple linear regression assumes a model:

Y = β0 + β1X + ϵ,

with the model parameters typically estimated by least squares

We can address the five key questions:
• Is there any relationship between X and Y ? ⇒ Test H0 : β1 = 0
• How much of Y is explained by X? ⇒ R2

• How does Y change per unit change in X? ⇒ β̂1
• How accurately can we predict Y given X? ⇒ Var(Y |X ), related to R2

• Is the relationship linear? ⇒ β̂0, β̂1, R2

Next lecture: multiple linear regression
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