STA 35C: Statistical Data Science III

Lecture 4: Simple Linear Regression

Dogyoon Song

Spring 2025, UC Davis

Agenda

Statistical learning:

- Definition: A set of tools for understanding data and making informed predictions
- Goal: Estimate a function $f: X \to Y$ that
 - (1) minimizes the reducible error $\hat{f}(X) f(X)$, and
 - (2) is interpretable
- Methodologies typically fall under parametric or nonparametric approaches

Today: We begin exploring concrete methods. Specifically, we'll discuss:

- Categorizing statistical learning problems
- (Linear) Regression
- Simple linear regression

Supervised vs. unsupervised learning

Most statistical learning problems fall into two categories: supervised or unsupervised

In supervised learning:

- Each predictor observation x_i is accompanied by a response y_i
- "Supervised" because the responses guide (supervise) the analysis
- Many classical statistical learning methods operate in the supervised learning domain
 - Example: linear regression, logistic regression, support vector machine, etc.

In unsupervised learning:

- We have observations x_i but no response y_i
- "Unsupervised" because there is no response to guide the analysis
- Often used to explore relationships among observations or variables
 - Example: Cluster analysis, dimension reduction, etc.

Sometimes, whether an analysis is supervised or unsupervised is less clear-cut

Illustration: Supervised vs. unsupervised learning

Figure: Supervised vs. unsupervised learning

Regression vs. classification

Variables can be quantitative or qualitative (categorical):

- Quantitative variables take numeric values
- Qualitative variables belong to one of K different classes

Depending on whether the **response** is quantitative or qualitative:

- Problems with a *quantitative* response are called **regression** problems
- Problems with a *qualitative* response are called **classification** problems

However, this distinction is not always crisp (e.g., linear vs. logistic regression)

Whether predictors are qualitative or quantitative is generally considered less important

Illustration: Regression vs. classification

Figure: Regression vs. classification

Regression: What do we want to do with this?

Regression problems are supervised learning problems with a quantitative response

Typical questions we want to address via regression include:

- Is there any relationship between X and Y?
- How strong is it? (How much of Y is explained by X?)
- How large is the association? (How does Y change per unit change in X?)
- How accurately can we predict Y given X?
- Is the relationship linear?

With multiple predictors, we can also ask (in future lectures):

- Which X are associated with Y?
- Are there interactions among X?

Simple linear regression

Simple linear regression predicts Y from a single variable X, assuming an approximately linear relationship between X and Y

Mathematically, we assume

$$Y = \beta_0 + \beta_1 X + \epsilon,$$

- Model parameters: β_0 (intercept), β_1 (slope) are fixed, unknown constants
- ϵ is an error term

We often say we regress Y on X

Once we have estimated $\hat{\beta}_0$ and $\hat{\beta}_1$ from training data, we can predict

$$\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x$$

Example

Figure: The Advertising data set shows Sales of a product in 200 different markets against advertising budgets for three media: TV, Radio, and Newspaper [JWHT21, Figure 2.1].

Estimating the coefficients: Least squares

In practice, β_0 and β_1 are unknown and must be estimated from data

$$(x_1, y_1), (x, y_2), \ldots, (x_n, y_n).$$

We want the fitted line $\hat{\beta}_0 + \hat{\beta}_1 x$ to be close to the true line $\beta_0 + \beta_1 x$

The most common approach involves the **least squares** criterion:

• The Residual sum of squares (RSS) is defined as

RSS =
$$\sum_{i=1}^{n} (\hat{y}_i - y_i)^2 = \sum_{i=1}^{n} (\hat{\beta}_0 + \hat{\beta}_1 x_i - y_i)^2$$

- The *least squares* approach chooses $\hat{\beta}_0$ and $\hat{\beta}_1$ to minimize the RSS
- The solutions are

$$\hat{\beta}_1 = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{\sum_{i=1}^{n} (x_i - \bar{x})^2}$$
 and $\hat{\beta}_0 = \bar{y} - \hat{\beta}_1 \bar{x}$

where
$$\bar{y} := \frac{1}{n} \sum_{i=1}^{n} y_i$$
 and $\bar{x} := \frac{1}{n} \sum_{i=1}^{n} x_i$

Pop-up quiz: Least squares coefficients

Dataset: Three observations:

$$(x_1, y_1) = (1, 2), (x_2, y_2) = (2, 3), (x_3, y_3) = (3, 6).$$

Question: What are the estimated slope $\hat{\beta}_1$ and intercept $\hat{\beta}_0$?

Hints (partial sums to speed up):

$$\bar{x}=2, \quad \bar{y}=\frac{2+3+6}{3}=3.667, \quad \sum (x_i-\bar{x})^2=2, \quad \sum (x_i-\bar{x})(y_i-\bar{y})=4.$$

Multiple-choice answers:

- a) $\hat{\beta}_1 = 2$, $\hat{\beta}_0 = -0.333$
- b) $\hat{\beta}_1 = 1.5$, $\hat{\beta}_0 = 1$
- c) $\hat{\beta}_1 = 2$, $\hat{\beta}_0 = 0$
- d) $\hat{\beta}_1 = 3$, $\hat{\beta}_0 = -2$

Properties of the least squares estimator

 $(\hat{\beta}_0, \hat{\beta}_1)$ estimate (β_0, β_1) using data, so they need not be the same

Figure: Least squares coefficient estimates from 100 data points. Red: population regression line, Blue: least squares line, Light blue: ten separate least squares lines [JWHT21, Figure 3.3].

Properties of the least squares estimator (cont'd)

Unbiasedness: $\hat{\beta}_0$ and $\hat{\beta}_1$ are *unbiased* estimators of β_0 and β_1

- $\mathbb{E}[\hat{\beta}_0] = \beta_0$ and $\mathbb{E}[\hat{\beta}_1] = \beta_1$
- If we repeat the least squares regression using new samples from the same population, then their average converges to the population regression line

Sampling distribution: Nevertheless, we only have one dataset!

- We care about how far $\hat{\beta}_0, \hat{\beta}_1$ can deviate from their expected values
- Under certain assumptions¹, the standard errors of $\hat{\beta}_0$ and $\hat{\beta}_1$ are:

$$\operatorname{SE}(\hat{\beta}_0)^2 = \sigma^2 \left[\frac{1}{n} + \frac{\bar{x}^2}{\sum_{i=1}^n (x_i - \bar{x})^2} \right] \quad \text{and} \quad \operatorname{SE}(\hat{\beta}_1)^2 = \frac{\sigma^2}{\sum_{i=1}^n (x_i - \bar{x})^2}$$

where $\sigma^2 = \operatorname{Var}(\epsilon)$, which is typically unknown and has to be estimated

 $^{^1}$ For these to be strictly valid, we must assume ϵ_i for all i have variance σ^2 and are uncorrelated

Inference about the model parameters

Usually, we estimate $\sigma^2 = Var(\epsilon)$ using the *residual standard error* (RSE):

$$\hat{\sigma} = \text{RSE} = \sqrt{\frac{RSS}{n-2}}$$

where RSS =
$$\sum_{i=1}^{n} (\hat{y}_i - y_i)^2 = \sum_{i=1}^{n} (\hat{\beta}_0 + \hat{\beta}_1 x_i - y_i)^2$$

Confidence Intervals: Standard errors can be used to compute confidence intervals

- A 95% confidence interval of β_i is approximately $\hat{\beta}_i \pm 1.96 \cdot \text{SE}(\hat{\beta}_i)$
- There is approximately a 95% chance that the (random) interval

$$\left[\hat{eta}_i - 1.96 \cdot \operatorname{SE}(\hat{eta}_i), \ \hat{eta}_i + 1.96 \cdot \operatorname{SE}(\hat{eta}_i)\right]$$

cotains the true value of β_i

Inference about the model parameters (cont'd)

Hypothesis Testing: Standard errors can also be used for hypothesis tests on β_0 or β_1

• A common test:

$$H_0: \beta_1 = 0$$
 (no relationship) vs. $H_1: \beta_1 \neq 0$ (some relationship).

• Compute a *t-statistic* and compare to a *t-*distribution w/(n-2) degrees of freedom:

$$t = \frac{\hat{\beta}_1 - 0}{\operatorname{SE}(\hat{\beta}_1)}$$

Figure: t-distribution (image from Wikipedia).

Pop-up quiz: Confidence interval / hypothesis test

Let's use the same dataset as before:

We found $\hat{\beta}_1=2$ and $\hat{\beta}_0=-0.333$; also observe that $\sum (x_i-\bar{x})^2=2$

1) **Residual standard error:** We have n = 3, so n - 2 = 1. The RSS is

$$RSS = \sum_{i=1}^{3} (y_i - \hat{y}_i)^2 = 0.666... \quad (\approx \frac{2}{3}) \qquad \Longrightarrow \qquad \hat{\sigma} = \sqrt{\frac{RSS}{n-2}} = ?$$

- 2) Standard error of $\hat{\beta}_1$: $SE(\hat{\beta}_1) = \sqrt{\frac{\hat{\sigma}^2}{\sum (x_i \bar{x})^2}} = ?$
- 3) **Hypothesis test:** $H_0: \beta_1 = 0$ vs. $H_1: \beta_1 \neq 0$. What is the *t*-statistic $t = \frac{\beta_1 0}{\operatorname{SE}(\hat{\beta}_1)} = ?$

Multiple-choice answers:

- A) $\hat{\sigma} \approx 0.82$, SE($\hat{\beta}_1$) ≈ 0.58 , $t \approx 3.46$.
- B) $\hat{\sigma} \approx 1.0$, SE($\hat{\beta}_1$) ≈ 0.5 , $t \approx 2.0$.
- C) $\hat{\sigma} \approx 0.58$, SE($\hat{\beta}_1$) ≈ 0.82 , $t \approx 0.71$.
- D) $\hat{\sigma} \approx 0.50$, SE($\hat{\beta}_1$) ≈ 0.25 , $t \approx 8.0$.

Assessing the accuracy of the model

The quality of a linear fit is typically assessed using RSE or the R^2 statistic

• Residual standard error (RSE): "average deviation of Y from the regression line"

RSE =
$$\sqrt{\frac{RSS}{n-2}}$$
 = $\sqrt{\frac{1}{n-2}\sum_{i=1}^{n}(y_i - \hat{y}_i)^2}$,

which is an estimate of the standard deviation of ϵ

• The R²: "the proportion of variance in Y explained by X"

$$R^2 = \frac{\text{TSS} - \text{RSS}}{\text{TSS}} = 1 - \frac{\text{RSS}}{\text{TSS}}$$

where $TSS = \sum_{i=1}^{n} (y_i - \bar{y})^2$ is the total sum of squares (TSS)

The R^2 statistic

The R^2 ranges from 0 to 1, and is independent of the scale of Y

- R^2 near 1 indicates most variability in Y is explained by the linear regression model
- R² near 0 indicates little variability is explained
 - ullet e.g,. the linear model assumption is wrong or the error variance σ^2 is large

Recall the (sample) correlation:

$$\widehat{\mathrm{Cor}}(X,Y) = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum_{i=1}^{n} (x_i - \bar{x})^2} \sqrt{\sum_{i=1}^{n} (y_i - \bar{y})^2}}$$

- In simple linear regression, $R^2 = r^2$, where r = Cor(X, Y)
- This equality does *not* hold in multiple linear regression

Wrap-up

Simple linear regression assumes a model:

$$Y = \beta_0 + \beta_1 X + \epsilon,$$

with the model parameters typically estimated by least squares

We can address the five key questions:

• Is there any relationship between
$$X$$
 and Y ?

$$\Rightarrow$$
 Test $H_0: \beta_1 = 0$

$$\Rightarrow R^2$$

$$\rightarrow \rho_1$$

$$\Rightarrow \operatorname{Var}(Y|X)$$
, related to R^2

$$\Rightarrow \hat{\beta}_0, \hat{\beta}_1, \ R^2$$

Next lecture: multiple linear regression

References

Gareth James, Daniela Witten, Trevor Hastie, and Robert Tibshirani.

An Introduction to Statistical Learning: with Applications in R, volume 112 of Springer Texts in Statistics.

Springer, New York, NY, 2nd edition, 2021.