STA 35C: Statistical Data Science III

Lecture 5: Multiple Linear Regression & Polynomial Regression

Dogyoon Song

Spring 2025, UC Davis

Agenda

Last time: Simple linear regression

- Model: $Y = \beta_0 + \beta_1 X + \epsilon$
- Least squares: estimate β_0, β_1 by minimizing RSS = $\sum_{i=1}^{n} (y_i \hat{y}_i)^2$
- Inference on β_0, β_1 : confidence intervals & hypothesis tests using $SE(\hat{\beta}_i)$
- Model fit: $R^2 = 1 \frac{\text{RSS}}{\text{TSS}}$ where $\text{TSS} = \sum_{i=1}^{n} (y_i \bar{y})^2$

Today: Extending simple linear regression

- What if we have more than one predictor: $X_1, X_2, ...$?
 - \rightarrow Multiple linear regression
- What if X_1 and X_2 interact, or if Y depends on X^2 instead of X?
 - ightarrow Polynomial regression

Outline

- Multiple linear regression
- Key statistical questions in multiple linear regression
- Accommodating non-linear relationships

Motivation for multiple linear regression

Recall the Advertising dataset and the three separate simple linear regression lines:

Figure: The Advertising data set: Sales of a product in 200 different markets against advertising budgets for three media: TV, Radio, and Newspaper [JWHT21, Figure 2.1].

Problem: Each simple linear regression line ignores the other two predictors

Question: Can we extend our analysis to accommodate *all* predictors simultaneously?

Multiple linear regression: Setup

We predict Y using multiple variables X_1, X_2, \ldots, X_p , assuming:

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_p X_p + \epsilon,$$

- Model parameters: $\beta_0, \beta_1, \dots, \beta_p$ are fixed, unknown constants
- ullet is an error term, independent of X_1,\ldots,X_p

The coefficient β_j is interpreted as the average effect on Y of a unit increase in X_j , holding all other predictors fixed

Once we estimate $\hat{\beta}_0, \hat{\beta}_1, \dots, \hat{\beta}_p$ from training data, we can predict

$$\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x_1 + \dots + \hat{\beta}_p x_p$$

Visualizing multiple linear regression

Figure: An illustration of multiple linear regression [JWHT21, Figure 3.4].

Coefficient estimation via least squares

Coefficients β_0 , β_1 ,..., β_p must be estimated from data (x_1, y_1) , (x_2, y_2) ,..., (x_n, y_n) , where $x_i = (x_{i1}, x_{i2}, ..., x_{ip})$

Again, we use the least squares criterion:

• The *least squares* approach chooses $\hat{\beta}_0, \hat{\beta}_1, \dots, \hat{\beta}_p$ to minimize the RSS:

$$RSS = \sum_{i=1}^{n} (\hat{y}_i - y_i)^2 = \sum_{i=1}^{n} (\hat{\beta}_0 + \hat{\beta}_1 x_{i1} + \hat{\beta}_2 x_{i2} + \cdots + \hat{\beta}_p x_{ip} - y_i)^2$$

• The solutions have more complicated forms in this multiple-variable case¹:

•
$$\hat{\boldsymbol{\beta}} = \begin{bmatrix} \hat{\beta}_0 \\ \vdots \\ \hat{\beta}_p \end{bmatrix} = (\mathbf{X}^{\top}\mathbf{X})^{-1}\mathbf{X}^{\top}\mathbf{y} \text{ where } \mathbf{X} = \begin{bmatrix} 1 & x_{11} & \cdots & x_{1p} \\ \vdots & \vdots & \ddots & \vdots \\ 1 & x_{n1} & \cdots & x_{np} \end{bmatrix} \text{ and } \mathbf{y} = \begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix}$$

¹This can be derived by setting the partial derivatives of RSS to zero

Pop-up quiz: Coefficients in multiple lnear regression

Scenario: We fit a multiple linear regression model on the **Advertising** dataset:

Sales =
$$\beta_0 + \beta_1 \text{ TV} + \beta_2 \text{ Radio} + \beta_3 \text{ Newspaper} + \varepsilon$$
.

Suppose that we obtain:

$$\hat{\beta}_1 = 0.04, \quad \hat{\beta}_2 = 0.18, \quad \hat{\beta}_3 = -0.02.$$

Question: Which statement *best* describes the meaning of $\hat{\beta}_1 = 0.04$ in this model?

Multiple-choice answers:

- A) TV advertising alone explains 4% of the variation in Sales.
- B) For every additional dollar spent on TV, Sales increases by 0.04 units, assuming Radio and Newspaper are both zero.
- C) For every additional dollar spent on TV advertising, Sales increases by 0.04 units on average, controlling for Radio and Newspaper.
- D) If TV advertising goes up by \$100, Sales is guaranteed to go up by 4 units, regardless of Radio or Newspaper.

Some key questions with multiple predictors

When we perform multiple linear regression, we often want to answer questions like:

- Are predictors X_1, \ldots, X_p related to Y (i.e., do they help predict Y)?
- Which subset of X_1, \ldots, X_p is most important?
- How well does the model fit the data?
- Given new predictor values, what response value should we predict and how accurate is that prediction?

Let's address these questions one by one

Hypothesis testing for relationship between Y and each X_j

Recall from simple linear regression that we conduct a hypothesis test using a *t*-statistic:

- $H_0: \beta_1 = 0$ (no relationship) vs. $H_1: \beta_1 \neq 0$ (some relationship)
- We reject H_0 or not, based on the value of

$$t = \frac{\hat{\beta}_1 - 0}{\operatorname{SE}(\hat{\beta}_1)}$$

In multiple linear regression, we can do the same test to see if Y is related to each X_j (conditioned on other predictors)

However:

- Would we get the same conclusions from simple vs. multiple regressions?
- What if we want to test whether Y is related to any of the X_j 's?

Advertising example: Simple vs. multiple regressions

Q: Is newspaper useful in predicting sales?

	Coefficient	Std. error	t-statistic	p-value
Intercept	7.0325	0.4578	15.36	< 0.0001
TV	0.0475	0.0027	17.67	< 0.0001
	Coefficient	Std. error	t-statistic	<i>p</i> -value
Intercept	Coefficient 9.312	Std. error 0.563	t-statistic	<i>p</i> -value < 0.0001

	Coefficient	Std. error	$t ext{-statistic}$	p-value
Intercept	12.351	0.621	19.88	< 0.0001
newspaper	0.055	0.017	3.30	0.00115

Figure: Separate simple regressions suggest TV, radio, and newspaper are all significant [JWHT21, Tables 3.1 & 3.3].

	Coefficient	Std. error	$t ext{-statistic}$	$p ext{-value}$
Intercept	2.939	0.3119	9.42	< 0.0001
TV	0.046	0.0014	32.81	< 0.0001
radio	0.189	0.0086	21.89	< 0.0001
newspaper	-0.001	0.0059	-0.18	0.8599

Figure: Multiple regression suggests newspaper is not significant [JWHT21, Table 3.4].

	TV	radio	newspaper	sales
TV	1.0000	0.0548	0.0567	0.7822
radio		1.0000	0.3541	0.5762
newspaper			1.0000	0.2283
sales				1.0000

Figure: Correlation matrix for TV, radio, newspaper, and sales [JWHT21, Table 3.5].

In multiple regression, β_j measures the effect of X_j on Y, holding all other predictors fixed

Advertising example: Single vs. any predictor

Q: Is "any" of TV, radio, newspaper useful in predicting sales?

We now test a different, joint hypothesis:

$$H_0: \beta_1 = \beta_2 = \cdots = \beta_p = 0$$
 vs. $H_1:$ at least one $\beta_j \neq 0$

This can be tested using the *F-statistic*:

$$F = rac{(\mathrm{TSS} - \mathrm{RSS})/p}{\mathrm{RSS}/(n-p-1)}$$
 $egin{dcases} ext{Reject H_0} & ext{if F is large,} \ ext{Cannot reject H_0} & ext{if F is "typical".} \end{cases}$

Rationale: If H_0 is true,

- $\mathbb{E}[RSS/(n-p-1)] = \mathbb{E}[TSS RSS)/p] = \sigma^2$
- F follows an F-distribution with (p, n-p-1) degrees of freedom
- \Rightarrow If H_0 is true, F will likely take a typical value; if F is very large, then we reject H_0

Selecting "important" predictors²

Suppose we are confident that at least some predictors are related to Y

Variable selection: "Which subset of predictors is most useful or important?"

- Naive approach: Try all $2^p 1$ possible combinations of predictors
 - Evaluate each model by some criterion
 - Challenge: Intractable for large p (exponential number of subsets)
- Practical approaches:
 - Greedy methods: Forward, backward, or stepwise (mixed) selection
 - Regularization methods: Modify the least squares criterion, e.g., LASSO

We will discuss these methods in more detail in future lectures

²We will revisit this question later

Evaluating the model fit

The quality of a multiple linear regression fit can be measured by the RSE or the R^2

• Residual standard error (RSE): "average deviation of Y from the regression line"

$$RSE = \sqrt{\frac{RSS}{n-p-1}}$$
 where $RSS = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$

• The R^2 : "the proportion of variance in Y explained by X"

$$R^2 = \frac{\mathrm{TSS} - \mathrm{RSS}}{\mathrm{TSS}} = 1 - \frac{\mathrm{RSS}}{\mathrm{TSS}}, \quad \text{where} \quad \mathrm{TSS} = \sum_{i=1}^n (y_i - \bar{y})^2$$

- R² always increases when more predictors are added to the model
- "Adjusted" R^2 compensates for adding predictors:

$$R_{\text{adj}}^2 = 1 - \frac{\text{RSS}/(n-p-1)}{\text{TSS}/(n-1)}$$

Pop-up quiz: R^2 vs. adjusted R^2

Scenario: We fit a model on n = 100 data points using a single predictor X_1 :

$$R^2 = 0.80, \quad R_{\text{adj}}^2 = 0.79.$$

After adding a second predictor X_2 (suspected to be mostly noise), we get:

$$R^2 = 0.82$$
, $R_{\text{adj}}^2 = 0.78$.

Question: Why did R^2 go up while R^2_{adi} went down?

Multiple-choice answers:

- a) There must be a calculation error; if R^2 increases, $R^2_{\rm adj}$ must also increase.
- b) X_2 adds a tiny improvement to the fit by chance, raising R^2 , but not enough to offset the penalty for extra parameters, so $R_{\rm adi}^2$ drops.
- c) Adjusted R^2 always decreases whenever you add predictors, no matter how useful they are.
- d) R^2 does not measure model fit at all, whereas $R^2_{
 m adj}$ is the only valid measure of fit.

Confidence intervals and prediction intervals

With
$$\hat{\beta}_0, \hat{\beta}_1, \dots, \hat{\beta}_p$$
, we predict $\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x_1 + \dots + \hat{\beta}_p x_p$

How certain are we about this prediction?

- $\hat{y} = \hat{f}_{\beta}(x)$ only estimates $f_{\beta}(x) = \beta_0 + \sum_{j=1}^{p} \beta_j x_j$.
- $y = f(x) + \epsilon$ has an error term, so additional variability.

Confidence interval for f(x):

- Reflects uncertainty in prediction due to the estimated coefficients
- A 95% CI should contain f(x) with probability 0.95

Prediction interval for y (given x):

- Accounts for uncertainty in both $\hat{y} = \hat{f}(x)$ and the random noise ϵ
- A 95% PI should contain the actual $y = f(x) + \epsilon$ with probability 0.95
- Note: The PI is always wider than the CI

Exact formulas are beyond our scope, but in **R**:

```
predict(model, newdata = x_0, interval = "confidence", level = 0.95)
```

What if there is a non-linear relationship?

Figure: Pronounced synergy between TV and Radio; positive residuals cluster along the 45-degree line [JWHT21, Figure 3.5].

Figure: A non-linear relationship between mpg and horsepower is noticeable [JWHT21, Figure 3.8].

 \rightarrow We can add **interaction** terms (TV \times Radio) or **non-linear** terms (horsepower²) to capture these effects

Polynomial regression

Polynomial regression extends the linear model by including powers of predictors³:

$$Y = \beta_0 + \beta_1 X + \beta_2 X^2 + \dots + \beta_d X^d + \epsilon$$

- Treated as multiple linear regression on transformed predictors (X, X^2, \dots, X^d)
- Although non-linear in X, the model is still linear in the coefficients β_j

Example: Interaction effect (synergy between TV and Radio)

$$\begin{aligned} \text{Sales} &= \beta_0 + \beta_1 \text{TV} + \beta_2 \text{Radio} + \beta_3 \underbrace{\text{TV} \times \text{Radio}}_{\text{interaction term}} + \epsilon \\ &= \beta_0 + \left(\beta_1 + \beta_3 \text{Radio}\right) \text{TV} + \beta_2 \text{Radio} + \epsilon \end{aligned}$$

Example: Quadratic model

$$mpg = \beta_0 + \beta_1 horsepower + \beta_2 horsepower^2 + \epsilon$$

³More generally, $Y = \sum_{\alpha : |\alpha| \le d} \beta_{\alpha} \mathbf{X}^{\alpha} + \epsilon$ where $\alpha = (\alpha_1, \dots, \alpha_p)$ and $\mathbf{X}^{\alpha} = X_1^{\alpha_1} X_2^{\alpha_2} \cdots X_p^{\alpha_p}$

Wrap-up

Multiple linear regression assumes a model:

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_p X_p + \epsilon$$

with the parameters typically estimated by least squares

We can address the following questions:

• Is
$$X_i$$
 related to Y ?

• Is any of
$$X_1, \ldots, X_p$$
 related to Y ? \Rightarrow Test $H_0: M_0$

$$\Rightarrow$$
 Test $H_0: \beta_j = 0$

$$\Rightarrow$$
 Test $H_0: \beta_1 = \cdots = \beta_p = 0$

?
$$p_1 = \cdots = p_p = 0$$

$$\Rightarrow \hat{\beta}_i$$

$$\Rightarrow \text{RSE}, R^2, R_{\text{adj}}^2$$

$$\Rightarrow$$
 CI & PI

Next lecture: Dummy variables, pitfalls in linear regression, etc.

References

Gareth James, Daniela Witten, Trevor Hastie, and Robert Tibshirani.

An Introduction to Statistical Learning: with Applications in R, volume 112 of Springer Texts in Statistics.

Springer, New York, NY, 2nd edition, 2021.