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Agenda

Last time: Simple linear regression
• Model: Y = β0 + β1X + ϵ

• Least squares: estimate β0, β1 by minimizing RSS =
∑n

i=1(yi − ŷi)2

• Inference on β0, β1: confidence intervals & hypothesis tests using SE(β̂i)
• Model fit: R2 = 1 − RSS

TSS where TSS =
∑n

i=1(yi − ȳ)2

Today: Extending simple linear regression
• What if we have more than one predictor: X1, X2, . . . ?

→ Multiple linear regression
• What if X1 and X2 interact, or if Y depends on X 2 instead of X?

→ Polynomial regression
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Outline

• Multiple linear regression

• Key statistical questions in multiple linear regression

• Accommodating non-linear relationships
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Motivation for multiple linear regression
Recall the Advertising dataset and the three separate simple linear regression lines:

Figure: The Advertising data set: Sales of a product in 200 different markets against
advertising budgets for three media: TV, Radio, and Newspaper [JWHT21, Figure 2.1].

Problem: Each simple linear regression line ignores the other two predictors

Question: Can we extend our analysis to accommodate all predictors simultaneously?
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Multiple linear regression: Setup

We predict Y using multiple variables X1, X2, . . . , Xp, assuming:

Y = β0 + β1X1 + β2X2 + · · · + βpXp + ϵ,

• Model parameters: β0, β1, . . . , βp are fixed, unknown constants
• ϵ is an error term, independent of X1, . . . , Xp

The coefficient βj is interpreted as the average effect on Y of a unit increase in Xj ,
holding all other predictors fixed

Once we estimate β̂0, β̂1, . . . , β̂p from training data, we can predict

ŷ = β̂0 + β̂1x1 + · · · + β̂pxp
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Visualizing multiple linear regression

Figure: An illustration of multiple linear regression [JWHT21, Figure 3.4].
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Coefficient estimation via least squares

Coefficients β0, β1, . . . , βp must be estimated from data (x1, y1), (x2, y2), . . . , (xn, yn),
where xi = (xi1, xi2, . . . , xip)

Again, we use the least squares criterion:
• The least squares approach chooses β̂0, β̂1, . . . , β̂p to minimize the RSS:

RSS =
n∑

i=1

(
ŷi − yi)2 =

n∑
i=1

(
β̂0 + β̂1xi1 + β̂2xi2 + · · · β̂pxip − yi

)2

• The solutions have more complicated forms in this multiple-variable case1:

• β̂ =

β̂0
...

β̂p

 = (X⊤X)−1X⊤y where X =

1 x11 · · · x1p
...

...
. . .

...
1 xn1 · · · xnp

 and y =

y1
...

yn


1This can be derived by setting the partial derivatives of RSS to zero
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Pop-up quiz: Coefficients in multiple lnear regression

Scenario: We fit a multiple linear regression model on the Advertising dataset:

Sales = β0 + β1 TV + β2 Radio + β3 Newspaper + ε.

Suppose that we obtain:

β̂1 = 0.04, β̂2 = 0.18, β̂3 = −0.02.

Question: Which statement best describes the meaning of β̂1 = 0.04 in this model?
Multiple-choice answers:

A) TV advertising alone explains 4% of the variation in Sales.
B) For every additional dollar spent on TV, Sales increases by 0.04 units, assuming Radio and

Newspaper are both zero.
C) For every additional dollar spent on TV advertising, Sales increases by 0.04 units on average,

controlling for Radio and Newspaper.
D) If TV advertising goes up by $100, Sales is guaranteed to go up by 4 units, regardless of Radio or

Newspaper.
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Some key questions with multiple predictors

When we perform multiple linear regression, we often want to answer questions like:

• Are predictors X1, . . . , Xp related to Y (i.e., do they help predict Y )?
• Which subset of X1, . . . , Xp is most important?
• How well does the model fit the data?
• Given new predictor values, what response value should we predict and how accurate

is that prediction?

Let’s address these questions one by one
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Hypothesis testing for relationship between Y and each Xj

Recall from simple linear regression that we conduct a hypothesis test using a t-statistic:
• H0 : β1 = 0 (no relationship) vs. H1 : β1 ̸= 0 (some relationship)
• We reject H0 or not, based on the value of

t = β̂1 − 0
SE(β̂1)

In multiple linear regression, we can do the same test to see if Y is related to each Xj
(conditioned on other predictors)

However:
• Would we get the same conclusions from simple vs. multiple regressions?
• What if we want to test whether Y is related to any of the Xj ’s?
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Advertising example: Simple vs. multiple regressions
Q: Is newspaper useful in predicting sales?

Figure: Separate simple regressions suggest TV,
radio, and newspaper are all significant
[JWHT21, Tables 3.1 & 3.3].

Figure: Multiple regression suggests newspaper is
not significant [JWHT21, Table 3.4].

Figure: Correlation matrix for TV, radio,
newspaper, and sales [JWHT21, Table 3.5].

In multiple regression, βj measures the effect of Xj on Y , holding all other predictors fixed
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Advertising example: Single vs. any predictor
Q: Is “any” of TV, radio, newspaper useful in predicting sales?

We now test a different, joint hypothesis:

H0 : β1 = β2 = · · · = βp = 0 vs. H1 : at least one βj ̸= 0

This can be tested using the F-statistic:

F = (TSS − RSS)/p
RSS/(n − p − 1)

{
Reject H0 if F is large,

Cannot reject H0 if F is “typical”.

Rationale: If H0 is true,
• E[RSS/(n − p − 1)] = E[TSS − RSS)/p] = σ2

• F follows an F-distribution with (p, n − p − 1)) degrees of freedom
⇒ If H0 is true, F will likely take a typical value; if F is very large, then we reject H0
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Selecting “important” predictors2

Suppose we are confident that at least some predictors are related to Y

Variable selection: “Which subset of predictors is most useful or important?”
• Naive approach: Try all 2p − 1 possible combinations of predictors

• Evaluate each model by some criterion
• Challenge: Intractable for large p (exponential number of subsets)

• Practical approaches:
• Greedy methods: Forward, backward, or stepwise (mixed) selection
• Regularization methods: Modify the least squares criterion, e.g., LASSO

We will discuss these methods in more detail in future lectures

2We will revisit this question later
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Evaluating the model fit

The quality of a multiple linear regression fit can be measured by the RSE or the R2

• Residual standard error (RSE): “average deviation of Y from the regression line”

RSE =
√

RSS
n − p − 1 where RSS =

n∑
i=1

(yi − ŷi)2

• The R2: “the proportion of variance in Y explained by X”

R2 = TSS − RSS
TSS = 1 − RSS

TSS , where TSS =
n∑

i=1
(yi − ȳ)2

• R2 always increases when more predictors are added to the model
• “Adjusted” R2 compensates for adding predictors:

R2
adj = 1 − RSS/(n − p − 1)

TSS/(n − 1)
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Pop-up quiz: R2 vs. adjusted R2

Scenario: We fit a model on n = 100 data points using a single predictor X1:

R2 = 0.80, R2
adj = 0.79.

After adding a second predictor X2 (suspected to be mostly noise), we get:

R2 = 0.82, R2
adj = 0.78.

Question: Why did R2 go up while R2
adj went down?

Multiple-choice answers:
a) There must be a calculation error; if R2 increases, R2

adj must also increase.
b) X2 adds a tiny improvement to the fit by chance, raising R2, but not enough to offset the

penalty for extra parameters, so R2
adj drops.

c) Adjusted R2 always decreases whenever you add predictors, no matter how useful they are.
d) R2 does not measure model fit at all, whereas R2

adj is the only valid measure of fit.
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Confidence intervals and prediction intervals

With β̂0, β̂1, . . . , β̂p, we predict ŷ = β̂0 + β̂1x1 + · · · + β̂pxp

How certain are we about this prediction?
• ŷ = f̂β̂(x) only estimates fβ(x) = β0 +

∑p
j=1 βjxj .

• y = f (x) + ϵ has an error term, so additional variability.

Confidence interval for f (x):
• Reflects uncertainty in prediction due to the estimated coefficients
• A 95% CI should contain f (x) with probability 0.95

Prediction interval for y (given x):
• Accounts for uncertainty in both ŷ = f̂ (x) and the random noise ϵ
• A 95% PI should contain the actual y = f (x) + ϵ with probability 0.95
• Note: The PI is always wider than the CI

Exact formulas are beyond our scope, but in R:
predict(model, newdata = x0, interval = "confidence", level = 0.95)
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What if there is a non-linear relationship?

Figure: Pronounced synergy between TV and Radio;
positive residuals cluster along the 45-degree line
[JWHT21, Figure 3.5].

Figure: A non-linear relationship between mpg and
horsepower is noticeable [JWHT21, Figure 3.8].

→ We can add interaction terms (TV × Radio) or non-linear terms (horsepower2) to
capture these effects

17 / 20



Polynomial regression
Polynomial regression extends the linear model by including powers of predictors3:

Y = β0 + β1X + β2X 2 + · · · + βdXd + ϵ

• Treated as multiple linear regression on transformed predictors (X , X 2, . . . , Xd)
• Although non-linear in X , the model is still linear in the coefficients βj

Example: Interaction effect (synergy between TV and Radio)

Sales = β0 + β1TV + β2Radio + β3 TV × Radio︸ ︷︷ ︸
interaction term

+ϵ

= β0 + (β1 + β3Radio) TV + β2Radio + ϵ

Example: Quadratic model

mpg = β0 + β1horsepower + β2horsepower2 + ϵ

3More generally, Y =
∑

α:|α|≤d βαXα + ϵ where α = (α1, . . . , αp) and Xα = Xα1
1 Xα2

2 · · · Xαp
p
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Wrap-up

Multiple linear regression assumes a model:

Y = β0 + β1X1 + β2X2 + · · · + βpXp + ϵ

with the parameters typically estimated by least squares

We can address the following questions:
• Is Xj related to Y ? ⇒ Test H0 : βj = 0
• Is any of X1, . . . , Xp related to Y ? ⇒ Test H0 : β1 = · · · = βp = 0
• How does Y change per unit change in Xj (others fixed)? ⇒ β̂j
• How well does the model fit data? ⇒ RSE, R2, R2

adj
• How certain is our prediction of y? ⇒ CI & PI
• What if there is a non-linear relationship? ⇒ Add non-linear terms

Next lecture: Dummy variables, pitfalls in linear regression, etc.
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