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Agenda

Last time: Multiple linear regression
• Model
• Estimation via least squares
• Some key statistical questions
• Incorporating non-linear relationships

Today:
• Qualitative predictors
• Potential problems in linear regression
• Comparison: linear regression vs. k-NN
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Qualitative predictors: Motivation

Motivating example: Credit dataset
• Response: balance

• Quantitative predictors: age, cards, education, income, limit, rating

• Qualitative (categorical) predictors: own, student, status, region
• These do not have a natural numeric scale

Question: How do we incorporate categorical variables into a linear regression model?
• balance= −0.4 × “own a house” + 2.33 × “not a student” − . . . ?

Answer: Use a “dummy variable” to numerically encode each categorical level

3 / 23



Dummy variables

Idea: Convert a qualitative (categorical) predictor into dummy (indicator) variables

Case 1: Two-level factor
• Example: Homeowner status own ∈ {Yes, No}

• Create a dummy variable: D =
{

1 if Yes
0 if No

• In regression: Y = β0 + β1D + · · · + ϵ

Case 2: More than two levels
• Example: region ∈ {East, West, South}
• Create K − 1 dummies if there are K categories (with one level setting a baseline):

East, West, South → DWest, DSouth
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Interpretation of the regression coefficient

Simple linear regression setup (with a dummy):

Y = β0 + β1D + ϵ, where D ∈ {0, 1}.

• If D = 0: Y = β0 + ϵ.

• If D = 1: Y = (β0 + β1) + ϵ.

• β1: The difference between the two group means (D = 1 vs. D = 0)

Again, we can use standard errors to compute t-stats, and p-values for hypothesis testing:
• H0 : β1 = 0 =⇒ no difference
• H1 : β1 ̸= 0 =⇒ significant difference
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Interpretation of the regression coefficient (continued)

Potential complications:
• When additional X are present:

Y = β0 + β1D + β2X + ϵ, where D ∈ {0, 1}
• β1 reflects the average effect of D, holding X fixed
• It may not represent a constant difference if other interactions are present

• Using different coding schemes ({0,2} or {-1,1}, etc.) changes the interpretation of
β0 and β1, but not the predictions
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Pop-up quiz: Linear regression with a dummy variable

Model:
Y = β0 + β1D + β2X + ϵ,

where D = 1 for treatment and D = 0 for control.

Question: Which choice most correctly interprets β0, β1, β2, and a large p-value for β1?
A) β0 is mean outcome for treatment at X = 0; β1 is difference in slope; β2 is slope for control;

a large p-value means X has no effect.
B) β0 is mean outcome for control at X = 0; β1 is difference in intercept (treatment vs. control);

β2 is the common slope; a large p-value means no evidence of an intercept difference.
C) β0 is a shared intercept; β1 is the slope for D = 1; β2 is slope for D = 0; a large p-value

means no effect of X .
D) β0 is the intercept at X = 1; β1 is slope for control; β2 is slope for treatment; a large

p-value means the treatment group has a zero slope.
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Potential pitfalls in linear regression

Linear regression is powerful, but it can fail if certain assumptions are not met

Possible issues:
• Validity of model assumptions

• Is the Y -X relationship truly linear?
• Are the errors ϵi truly uncorrelated?
• Is the variance of ϵ constant?

• Outliers & High-leverage points
• What if there are extremely unusual points in the training data?

• Collinearity among predictors
• What if some predictors are highly correlated?

Let’s examine what these problems entail, how to diagnose and possibly address them
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Problem 1: Nonlinear relationship

Problem: The response–predictor relationship may not be linear
• Example: Y ≈ β0 + β1X 2 + ϵ
• A purely linear model would systematically misfit (leading to large residuals)

Diagnosis: Residual plots often reveal a pattern (e.g., a systematic deviation from 0)

Remedies: (1) Include nonlinear transformations of X ; (2) Use more flexible models

Figure: Plots of residuals vs. predicted values [JWHT21, Figure 3.9].
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Problem 2: Correlated error terms

Problem: Errors {ϵi} correlated rather than independent
• Common in time series or grouped data (e.g., repeated measurements)
• If data is artificially duplicated or has a temporal pattern, errors can “track” each other

Figure: Plots of residuals from simulated time series data [JWHT21, Figure 3.10].
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Problem 2: Correlated error terms

Problem: Errors {ϵi} correlated rather than independent
• Common in time series or grouped data (e.g., repeated measurements)
• If data is artificially duplicated or has a temporal pattern, errors can “track” each other

Issue: Standard errors (thus p-values and confidence intervals) can be underestimated

Diagnosis: Examine residuals vs. time or group for systematic patterns

Possible remedies:
• Tailored techniques in time series (ARIMA, etc.) or grouped data
• Generically, careful experimental design to avoid correlated errors
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Problem 3: Non-constant variance of the error term

Problem: Heteroskedasticity (non-constant variance) of the errors
• Var(ϵi) not constant for each data point
• Classic OLS assumption is Var(ϵi) = σ2 (constant)

Figure: Residual plots with heteroskedastic error [JWHT21, Figure 3.11].
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Problem 3: Non-constant variance of the error term

Problem: Heteroskedasticity (non-constant variance) of the errors
• Var(ϵi) not constant for each data point
• Classic OLS assumption is Var(ϵi) = σ2 (constant)

Issue: Distorts standard errors and inference; RSE may be biased

Diagnosis: Check residual plots to detect a “funnel” shape

Possible remedies:
• Transform the response (log Y ,

√
Y , etc.) to stabilize variance

• Use weighted least squares to downweight high-variance points
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Problem 4: Outliers & high-leverage points

Definitions:
• Outlier: An observation where yi is “very far” from its predicted value ŷi .
• High-leverage point: A point with unusual xi ; it can strongly influence the fit
• Leverage score hi = [ X (X⊤X )−1X⊤ ]ii = ∂ŷi

∂yi
takes value between 1

n and 1

Figure: An illustration of outliers and high-leverage points [JWHT21, Figure 3.13].
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Problem 4: Outliers & high-leverage points

Definitions:
• Outlier: An observation where yi is “very far” from its predicted value ŷi .
• High-leverage point: A point with unusual xi ; it can strongly influence the fit
• Leverage score hi = [ X (X⊤X )−1X⊤ ]ii = ∂ŷi

∂yi
takes value between 1

n and 1

Why worry?
• Outliers can lead to a misfit, inflate RSE , and degrade R2.
• A small change in high-leverage points can pull the regression line substantially

Diagnosis:
• Residual plots, especially studentized residuals, can help identify outliers
• Plot leverages or Cook’s distance to find high-leverage points.

Possible remedies:
• Inspect and possibly remove or adjust suspicious observations
• Use a “robust” statistical method
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Problem 5: Collinearity

Definition: Two (or more) predictors are highly correlated
• Example: X2 = X1 + small noise, or X3 = −2X1 + 3X2, etc.

Figure: An illustration of high collinearity [JWHT21, Figure 3.14].
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Problem 5: Collinearity

Definition: Two (or more) predictors are highly correlated
• Example: X2 = X1 + small noise, or X3 = −2X1 + 3X2, etc.

Problem:
• Difficult to separate individual effects
• Coefficients may become unstable, with large standard errors

Diagnosis:
• Correlation matrix among predictors
• Variance Inflation Factor (VIF): VIF(β̂j) = 1

1−R2
Xj |X−j

Simple remedies:
• Drop one of the correlated predictors
• Combine or merge them (e.g., sum, average, or principal components)
• Use regularization techniques (e.g., ridge, lasso) to reduce variance
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Pop-up quiz: Spot the problem and suggest a remedy

Scenario: You fit a linear regression model and notice the residual plot has a distinct
“funnel” shape, where the spread of residuals grows wider as the fitted values increase.

Question 1: Which problem does this indicate, and what is one possible remedy?
A) Correlated errors; consider using mixed models or time-series methods.
B) Non-constant variance; stabilize variance by transforming the response or using weighted

least squares.
C) Outliers; remove data points with excessively large studentized residuals.
D) Collinearity ; drop or combine highly correlated predictors, or use regularization.

Question 2: If we ignore this issue and proceed with standard OLS, which is most likely?
A) Coefficient estimates could be heavily biased.
B) The data becomes unusable for any regression method.
C) All predictors will appear perfectly correlated.
D) The standard error is misestimated, leading to misleading inference.
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Comparison: Linear regression vs. k-NN

Linear regression (parametric):
• Assumes f (X ) is approximately linear in X
• Fits a small number of parameters (β0, . . . , βp)
• Inference is straightforward (confidence intervals, p-values, etc.)

k-nearest neighbors (kNN) (non-parametric)
• Predicts y at a new point x0 by averaging yi of its k nearest neighbors

f̂ (x0) = 1
k

∑
xi ∈Nk(x0)

yi , Nk(x0) : k-neighborhood of x0

• No explicit model assumption such as linearity
• Instead, the complexity lies in defining “closeness” and choosing k
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Visualization of k-NN

Figure: An illustration of kNN method (Left: k = 1; Right: k = 9) [JWHT21, Figure 3.16].
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Comparison: Parametric vs. nonparametric

When linear regression shines:
• The linear model is a good approximation to reality
• The number of predictors is large, but sample size is moderate
• We need interpretable coefficients for inference (CIs, p-values)

When nonparametric methods (like k-NN) outperforms:
• Fewer assumptions, can capture more complex relationships
• Perform well in low-dimensional settings (“curse of dimensionality” if p is large)
• Often better for pure prediction if plenty of data is available
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Wrap-up

• Qualitative (categorical) predictors:
• Represented using dummy variables (indicator)
• Interpretation as a “shift” across groups

• Pitfalls in linear regression:
• Model assumptions: Non-linearity, correlated errors, heteroskedasticity
• Unusual data points: Outliers & high-leverage points
• Collinearity among predictors

• Comparison: Linear regression vs. k-NN
• Parametric vs. nonparametric trade-offs

Next lecture: Assessing model accuracy & the bias-variance tradeoff
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