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Agenda

Quick review: The regression framework

Assessing a regression model:
• Training & test MSE
• The bias-variance tradeoff

Hints on Homework 1
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Recap: Regression

Regression = Supervised learning with a quantitative response Y
• Given data (x1, y1), . . . , (xn, yn), we estimate f so that Y ≈ f (X )
• Prediction: For xnew, predict ŷnew = f̂ (xnew)
• Inference: Learn relationships among X and Y

(Simple) linear regression:
• Assume f (X ) = β0 + β1X ; estimate β0, β1 by least squares
• Assessment:

• Prediction fit: RSS or R2 = 1 − RSS
TSS

• Inference: confidence intervals, hypothesis tests via RSE
• Extensions: multiple predictors, nonlinear terms, qualitative predictors
• Pitfalls: invalid linear model assumptions, outliers/high-leverage points, collinearity

Today’s focus: We’ve learned to build regression models; let’s see how to evaluate them
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Mean squared error (MSE)

Motivation: Given a model f̂ , we need a metric to gauge how well f̂ predicts Y

Why?
• To evaluate the current model’s accuracy
• To select among multiple candidate models

Mean squared error (MSE):

MSE = 1
n

n∑
i=1

(
yi − f̂ (xi)

)2

In linear regression, MSE corresponds to the residual sum of squares (RSS)
• Minimizing MSE ⇔ minimizing RSS (least squares)
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Training MSE vs. test MSE

Training MSE uses the same data that built the model:

MSEtrain = 1
n

n∑
i=1

(
yi − f̂ (xi)

)2

However, we truly care about future performance on unseen test data
• Hypothetically, if we had a set of new test points (x test

j , y test
j ):

MSEtest = 1
ntest

ntest∑
j=1

(y test
j − f̂ (x test

j ))2.

Ideally, we might want to learn a model by minimizing test MSE directly, but...
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The challenge in practice

Reality: We usually do not have a separate test dataset available
• Minimizing test MSE is impossible
• Thus, we typically end up minimizing training MSE instead

However, low training MSE ̸⇒ low test MSE
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Figure: As model flexibility grows, training MSE usually decreases, but
test MSE can increase [JWHT21, Figure 2.9]
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The bias-variance tradeoff

Question: Why does the U-shape in test error occur?

The expected1 test MSE can be decomposed into Bias2 + Variance + Irreducible Error

E
(
ynew − f̂ (xnew)

)2 =
(
E

[
f̂ (xnew)

]
− f (xnew)

)2
+ E

[(
f̂ (xnew) − E

[
f̂ (xnew)

])2]
+ Var(ϵ)

= Bias2(
f̂ (xnew)

)︸ ︷︷ ︸
model mismatch

+ Var
(
f̂ (xnew)

)︸ ︷︷ ︸
sensitivity to data

+ Var(ϵ)︸ ︷︷ ︸
irreducible

As model flexibility increases:
• Bias tends to decrease
• Variance tends to increase

Takeaway: An optimal model should balance bias and variance for the lowest test error

1The expectation is over random sampling of the training data and noise ϵ
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Interpreting bias and variance

Bias:
• Systematic error due to an overly simplistic model class
• Example: A linear model used when the true f is highly nonlinear

Variance:
• How much f̂ would fluctuate given a different training sample
• Complex and flexible models can vary greatly from one sample to another

Sweet spot:
• Balanced complexity—neither too simple nor too complex
• Techniques like cross-validation (future lecture) can help find it
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Summary of the bias-variance tradeoff
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Figure: Illustrations of bias-variance in different settings [JWHT21, Figures 2.10 & 2.11].

Bottom line:
• Overly simple models ⇒ high bias, low variance
• Overly complex models ⇒ low bias, high variance
• Optimal model complexity finds a sweet spot balancing both
• This idea applies broadly to many supervised learning methods

9 / 12



Wrap-up

Summary of today’s lecture:
• Assessing regression model accuracy via MSE
• Training vs. test MSE
• The bias-variance tradeoff

Recap of regression:
• Regression problem; setup and the objectives
• Linear regression

• Model & interpretation of regression coefficients
• Parameter estimation & inference
• Assessing model fit using RSS and R2

• Extensions: multiple predictors, nonlinear terms, qualitative predictors
• Model assessment: importance of test performance, and the bias-variance tradeoff

Next lecture: Classification
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Homework 1: What each problem is asking

Problem 1: Probability basics
• Recognizing that probabilities lie in [0, 1] and sum to 1
• Visualizing a distribution
• Computing expectation and variance

Problem 2: Bayes’ theorem and basic learning
• Estimating ptrue from coin flips via Bayes’ theorem
• Treating our “guess” as a random variable and updating its assigned probabilities using data
• Understanding how learning occurs and its sensitivity to ptrue and the initial guess

Problem 3: Simple linear regression
• Confirming the formula for least squares estimates
• Practicing basic computations on a simple dataset
• Running linear regression in R to see it in action

Problem 4: Model assessment
• Comparing training vs. test error as model complexity changes
• Exploring the bias-variance tradeoff and its subtle nuances
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