STA 35C: Statistical Data Science Il

Lecture 8: Classification Basics & Logistic Regression
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Announcement

Homework 2 is out
® Due Tue, Apr 22 by 11:59 PM
® Please submit a single PDF (unlimited pages), merging coding and non-coding parts

® Please review the homework problems early in case you might have questions

Midterm 1 is in class on Fri, Apr 25

Resources for additional help & guidance

® Discussion sections
e Office hours

® Questions on Piazza
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Agenda

So far: Regression

Today:

e (lassification overview
® What is classification?
® How it differs from regression
® | ogistic regression
® Basic ideas
® Model formulation
® Prediction with logistic regression

Parameter estimation
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Classification: Motivation

Classification = Supervised learning to predict qualitative (categorical) responses

Examples:
® Email spam vs. non-spam

® Fraudulent transaction vs. legitimate

Medical diagnosis (multiple possible conditions)
Handwritten digit classification (0-9)

Key difference from regression:
® Y is a class label, not a numeric value
® We often interpret output as the probability of a class
® Accuracy metrics differ (e.g., classification error, confusion matrix)
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Classification: A visual illustration
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Figure: The Default dataset: annual incomes vs. monthly credit card balances.
Orange: individuals who defaulted, Blue: those who did not [JWHT21, Figure 4.1].

Goal: Find a rule or bondary that assigns a new point xuew to the correct class
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Classification setting: Formal description

Goal: Given data {(x1,y1), (x2,¥2)s- -, (Xn,¥n)}
® Assign each x € RP to one of K classes y € {1,...,K}
® Learn a model f:RP — {1,..., K} that predicts the class Y for given X

Example
® Email text (X) — spam or not (Y)
® Handwritten image (X) — digit (Y)
¢ Patient measurements (X) — medical condition (Y)

Question: Wait... why not just use regression?
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Why not simply use regression methods?

Naive attempt:
® Assign Y € {0,1} or {1,..., K} numerically
® Fit a linear model Y = [y + 51X

Issues with the naive attempt:
® For K > 2, no natural numeric ordering or distance among classes

e Even with K = 2, predictions can fall outside [0, 1] if we interpret § as probability

We need a method that respects the categorical nature of Y and keeps predicted
probabilities in [0, 1]
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Visual illustration: Linear vs. logistic regression
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Figure: Left: Estimated “probability” of default using linear regression. Right: Probability
estimated via logistic regression [JWHT21, Figure 4.2].

Therefore: Classification-specific methods are typically more appropriate and preferred
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Pop-up quiz #1: Classification vs. regression

Question: Which of the following best describes the key difference between classification
and regression?

A) Classification predicts a continuous response variable, while regression predicts a
categorical outcome.

B) Classification deals with categorical labels, whereas regression deals with quantitative
outcomes.

C) Classification uses logistic regression, and regression uses linear regression.

D) Classification cannot produce predictions outside [0, 1], whereas regression can
predict any real number.

Answer: (B) is correct. Classification typically predicts discrete class labels, while
regression predicts numeric (continuous) values.
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Roadmap

We will learn two types of classification methods
¢ Logistic regression: a discriminative approach that models P(Y = 1|X)

¢ Generative models: first model P(X|Y'), and then apply Bayes' rule
® Example: Linear discriminant analysis (LDA), Naive Bayes

Today: Logistic regression with one predictor X (p = 1) for binary (K = 2) classification
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Logistic regression: Basic ideas

For binary classification (Y € {0,1}), let
p(x)=Pr(Y=1| X =x)

e We want a function f : x — p(x) € [0, 1]
® Then predict
v — {1 if p(x) > p* (e.g., 0.5),
0 otherwise.
How do we get there from linear regression?
e Naive approach: Y € {0,1}; model Y = 3y + 51X can yield § & [0,1]

® Odds: % € [0,00)

® The log-odds (logit): Iog(l_”g&)) € (—o0, )
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Logistic regression: Model formulation

Key idea: Fit a linear model to the log-odds (logit):

log (1ﬁ(;<()X)> = Bo + 1 X

¢ Positive log-odds — p(X) > 0.5, negative — p(X) < 0.5

Question: How do we write p(X) as a function of Sy, 51, X?
® QObserve that

p(X) '\ _ p(X)
log (1_'0()0) =po+ /X = 1—7;3()() = exp(fBo + B1X)
—  p(X)= exp(Bo + S1X)

~ 1+exp(Bo + B1X)
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Logistic regression model

Logistic regression model:

X
P00 = PrY =1 1) = i+ ) = 2B BX)

® gz %Zez is called the logistic function (=sigmoid function)

Sigmoid Function

Interpretation:
® p(x) € (0,1) for all x.
® Decision boundary at 3y + f1x = 0, i.e. p(x) = 0.5 (or any other threshold p*)
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An example in R: Fraud or not (cont’d)

Scenario: Predict if a transaction is fraud (Y = 1) or not (Y = 0) using its amount (X)

# Simulate toy data:

set.seed(123)

n <- 100

X <- runif(n, 1, 500) # transaction amount
# true logistic function: p =1 / [1 + exp(-(-5 + 0.02%X))]
p <- 1/ (1 + exp(-(-5 + 0.02%X)))

Y <- rbinom(n, 1, prob=p)

# Fit logistic regression:

model <- glm(Y ~ X, family=binomial)
summary (model)

# Probability of fraud at X=300:

predict(model, data.frame(X=300), type="response")

Check:

® [Interpret Bo, Bl

* exp(f1): how odds change per $1
increase in the transaction amount

Call:
glm(formula = Y ~ X, family = binomial)

Coefficients:

Estimate Std. Error z value Pr(>lzl)
(Intercept) -6.084377 1.242746 -4.896 9.79e-07 ***
X 0.024664 0.004923 5.010 5.44e-07 **x*

Signif. codes: 0 “k*%’ 0.001 ‘*x’ 0.01 ‘x> 0.05 ‘.’ 0.1
(Dispersion parameter for binomial family taken to be 1)
Null deviance: 138.629 on 99

Residual deviance: 53.504 on 98
AIC: 57.504

degrees of freedom
degrees of freedom

Number of Fisher Scoring iterations: 6
> # Probability of fraud at X=300:
> predict(model, data.frame(X=300), type="response")

1
0.7883033
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Pop-up quiz #2: Logistic regression coefficients

Scenario: You fit a logistic regression model |og(1L) Bo + 51X find B =-2.0

Question: Which of the following interpretations is most accurate?

A) The slope —2.0 is invalid because 1 must be positive in logistic regression.
B) For each one-unit increase in X, the predicted probability p decreases by 2.
C) For each one-unit increase in X, the odds of Y = 1 multiply by e™2 ~ 0.14.
D) If X goes up by 2 units, p becomes exactly zero.

Answer: (C) is correct. A negative coefficient implies a decrease in odds by a factor of
e~2 per unit increase in X.
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Regression coefficient estimation

Maximum likelihood estimation (MLE):
® Each Y; ~ Bernoulli(p;) where p; = o(5o + B1xi)
® Likelihood function:

L(Bo, B1) = Pr( (xi,yi)7=1; Bo, /1 H p(xi) [ (1—p(x))
—— S~——

data at hand logistic model iyi= i"yy=0

® Find Sy, A1 that maximizes L(Bo, £1) (for the given data)

Why not just do non-linear least squares?
® Minimizing 3 (y; — p;)? is feasible, but not consistent with Bernoulli nature of Y
e MLE aligns with the data’s distribution, yielding favorable statistical properties
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Wrap-up

Today’s takeaways:
e (lassification vs. regression: fundamental differences in Y
e Linear regression on {0,1} can be problematic for classification
® [ ogistic regression models the log-odds as 3y + S1x, ensuring p € (0,1)

® Parameter estimation via maximum likelihood criterion

Next lecture:
e Extending logistic regression to multiple predictors (p > 1) & multi-class (K > 2)

® Generative models for classification
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