STA 35C: Statistical Data Science III

Lecture 9: Logistic Regression (cont'd) & Classification Errors

Dogyoon Song

Spring 2025, UC Davis

Announcement

Midterm 1 in class on Fri, Apr 25 (12:10 pm - 1:00 pm)

- You may bring one sheet of letter-sized paper (8.5 \times 11 inches), double-sided, which can include formulas, brief notes, or any other relevant information
- Calculator: Simple calculators are allowed (no graphing function)
- **No Textbook**: Textbooks, reference books, or any other printed materials (beyond the cheat sheet mentioned above) are not allowed
- SDC Accommodations: Please confirm an exam schedule with AES online

Resources for additional help & guidance

- Discussion sections
- Office hours
- Questions on Piazza

Agenda

Last time: Simple logistic regression (p = 1, K = 2)

Today:

- Extensions of logistic regression
 - Multiple logistic regression (p > 1)
 - Multinomial logistic regression (K > 2)
- Assessing a classification method
 - Error rate & the Bayes classifier
 - Confusion matrix & false positives/negatives

Recap: Simple logistic regression (p = 1, K = 2)

Model:

$$\Pr(Y = 1 \mid X = x) = \sigma(\beta_0 + \beta_1 x) = \frac{\exp(\beta_0 + \beta_1 x)}{1 + \exp(\beta_0 + \beta_1 x)}$$

Where did it come from?

- We want to predict $p(X) = \Pr[Y = 1 \mid X] \in [0,1]$... using a linear model of X
- We need a monotone increasing function $p(X) \in [0,1] o f \circ p(X) \in \mathbb{R}$
- We model/assume the *log-odds* (*logit*) is linear in X:

$$\log\left(\frac{p(X)}{1-p(X)}\right) = \beta_0 + \beta_1 X$$

Interpreting coefficients:

- β_0 : log-odds at x = 0
- β_1 : a 1-unit increase in x multiplies the *odds* by e^{β_1}

Recap: Coefficient estimation & prediction

Maximum likelihood estimation (MLE):

- Given data $(x_i, y_i) \in \{0, 1\}, p_i = \Pr(Y_i = 1) = \sigma(\beta_0 + \beta_1 x_i)$
- The likelihood function of (β_0, β_1) is

$$L(\beta_0, \beta_1) = \Pr\left(\underbrace{(x_i, y_i)_{i=1}^n}_{\text{data at hand logistic model}}; \underbrace{\beta_0, \beta_1}_{\text{logistic model}}\right) = \prod_{i=1}^n p_i^{y_i} (1 - p_i)^{(1 - y_i)}$$

• Choose $\hat{\beta}_0,\hat{\beta}_1$ that maximizes $L(\beta_0,\beta_1)$, typically by numerical methods

Making predictions: Once we have $\hat{\beta}_0, \hat{\beta}_1$,

- $\hat{p}(x) = \sigma(\hat{\beta}_0 + \hat{\beta}_1 x)$
- Typically predict Y = 1 if $\hat{p}(x) \ge 0.5$; Y = 0 otherwise
- ullet Threshold 0.5 can be changed for a different value $p^* \in [0,1]$

Multiple logistic regression (p > 1)

Model:

$$\log\left(\frac{p(X)}{1-p(X)}\right) = \beta_0 + \beta_1 X_1 + \dots + \beta_p X_p$$

• The log-odds (=logit) is linear in X_1, \ldots, X_p

Coefficient interpretation:

- Each β_i measures the effect of X_i on the log-odds of Y=1, holding others fixed
- A 1-unit increase in X_i multiplies the odds by e^{β_i} when other predictors are controlled

Prediction rule: Once we obtain $p(X) = Pr(Y = 1 \mid X)$, we classify via

$$\hat{Y} = \begin{cases} 1 & \text{if } p(X) \ge p^*, \\ 0 & \text{otherwise.} \end{cases}$$

where p^* is a tunable parameter (typical choice = 0.5)

Decision boundary

Decision boundary: Observe that

$$p(X) \ge p^* \iff e^{\beta_0 + \beta_1 X_1 + \dots + \beta_p X_p} \ge \ln\left(\frac{p^*}{1 - p^*}\right)$$
 $\iff \beta_0 + \beta_1 X_1 + \dots + \beta_p X_p \ge \ln\left(\frac{p^*}{1 - p^*}\right)$

• The decision boundary is the hyperplane $\left\{ \vec{x} \in \mathbb{R}^p \mid \beta_0 + \sum_{i=1}^p \beta_i x_i = \ln\left(\frac{\rho^*}{1-\rho^*}\right) \right\}$

Visualization

• When p = 2, rearranging the terms gives the equation of a line in \mathbb{R}^2 :

$$\beta_2 x_2 = -\beta_0 - \beta_1 x_1 + \ln\left(\frac{p^*}{1-p^*}\right) \quad \stackrel{\text{if } \beta_2 \neq 0}{\Longrightarrow} \quad x_2 = -\frac{\beta_1}{\beta_2} x_1 - \frac{\beta_0}{\beta_2} + \frac{1}{\beta_2} \ln\left(\frac{p^*}{1-p^*}\right)$$

• In vector form, the equation $\vec{\beta}_{1:p} \cdot \mathbf{x} = -\beta_0 + \ln\left(\frac{p^*}{1-p^*}\right)$ defines a hyperplane normal to $\vec{\beta}_{1:p}$, translated by $\frac{1}{\|\vec{\beta}_{1:p}\|} \left(-\beta_0 + \ln\left(\frac{p^*}{1-p^*}\right)\right)$ from the origin along the direction of $\vec{\beta}_{1:p}$

Pop-up quiz #1: Logistic regression boundary in 2D

Scenario: Recall the decision boundary of a binary logistic regression model (with $p^* = 0.5$) is given by

$$\beta_0 + \beta_1 X_1 + \beta_2 X_2 = 0$$

Question 1: Consider two separate changes to the coefficients:

- β_1, β_2 changes from (1,1) to (2,1). Will the boundary rotate clockwise or counterclockwise?
- β_0 changes from 0 to -2. Will the boundary move upward or downward?
- A) Rotate clockwise, boundary moves up
- B) Rotate clockwise, boundary moves down
- C) Rotate counterclockwise, boundary moves up
- D) Rotate counterclockwise, boundary moves down

Question 2: How does the boundary change if we reduce p^* from 0.5 to 0.1?

Answer: For Q1, (A). Increasing β_1 (with β_2 fixed) steepens the negative slope, rotating the line clockwise. Lowering β_0 from 0 to -2 shifts the boundary upward in (X_1, X_2) space. For Q2, reducing p^* makes it easier to predict Y = 1, so the boundary adjusts downward to classify more points as positive.

Example: The **Default** data set mystery

	Coefficient	Std. error	z-statistic	<i>p</i> -value
Intercept	-10.6513	0.3612	-29.5	< 0.0001
balance	0.0055	0.0002	24.9	< 0.0001

	Coefficient	Std. error	z-statistic	p-value
Intercept	-3.5041	0.0707	-49.55	< 0.0001
student[Yes]	0.4049	0.1150	3.52	0.0004

	Coefficient	Std. error	z-statistic	p-value
Intercept	-10.8690	0.4923	-22.08	< 0.0001
balance	0.0057	0.0002	24.74	< 0.0001
income	0.0030	0.0082	0.37	0.7115
student[Yes]	-0.6468	0.2362	-2.74	0.0062

Figure: In the <u>Default</u> dataset, simple logistic regression shows a significantly *positive* association between student and default, whereas multiple logistic regression yields a significantly *negative* association [JWHT21, Tables 4.1 - 4.3].

Explanation: Confounding by balance

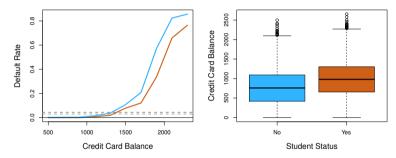


Figure: Confounding in the <u>Default</u> dataset. **Left:** default rates for students (<u>orange</u>) vs. non-students (<u>blue</u>). **Right:** boxplots of balance distribution [JWHT21, Tables 4.1 - 4.3].

- Simple logistic: student seems positively related to default due to higher overall default rate
- Once balance is accounted for, students are less likely to default
- Contradiction arises from confounding by balance; students tend to carry higher balance

Multinomial logistic regression (K > 2)

Illustration for the case with p=1 **and** K=3: Using k=3 as the baseline, we consider *two separate logistic models*, one for the pair (1,3) and the other for (2,3):

$$\log\left(\frac{p_{1}(x)}{p_{3}(x)}\right) = \beta_{1,0} + \beta_{1,1}X \qquad \Longrightarrow \qquad p_{1}(X) : p_{3}(X) = e^{\beta_{1,0} + \beta_{1,1}X} : 1$$

$$\log\left(\frac{p_{2}(x)}{p_{3}(x)}\right) = \beta_{2,0} + \beta_{2,1}X \qquad \Longrightarrow \qquad p_{2}(X) : p_{3}(X) = e^{\beta_{2,0} + \beta_{2,1}X} : 1$$

Normalizing by the sum¹, we can express each $p_i(x) = \Pr[Y = k \mid X = x]$ as

$$p_1(x) = rac{e^{eta_{1,0} + eta_{1,1} X}}{1 + e^{eta_{1,0} + eta_{1,1} X} + e^{eta_{2,0} + eta_{2,1} X}}, \quad p_2(x) = rac{e^{eta_{2,0} + eta_{2,1} X}}{1 + e^{eta_{1,0} + eta_{1,1} X} + e^{eta_{2,0} + eta_{2,1} X}},
onumber \ p_3(x) = rac{1}{1 + e^{eta_{1,0} + eta_{1,1} X} + e^{eta_{2,0} + eta_{2,1} X}}$$

¹Recall Problem in your Homework 1!

Multinomial logistic regression (K > 2)

More generally: Use class K as baseline, and model

$$\log\left(\frac{p_k(x)}{p_K(x)}\right) = \beta_{k,0} + \beta_{k,1}X_1 + \dots + \beta_{k,p}X_p \quad \text{for } k = 1,\dots,K-1$$

$$\Rightarrow \Pr(Y = k \mid X = x) = \begin{cases} \frac{\exp(\beta_{k,0} + \beta_{k,1} X_1 + \dots + \beta_{k,\rho} X_{\rho})}{1 + \sum_{k'=1}^{K-1} \exp(\beta_{k',0} + \beta_{k',1} X_1 + \dots + \beta_{k',\rho} X_{\rho})}, & \text{if } k = 1, \dots, K-1, \\ \frac{1}{1 + \sum_{k'=1}^{K-1} \exp(\beta_{k',0} + \beta_{k',1} X_1 + \dots + \beta_{k',\rho} X_{\rho})}, & \text{if } k = K \end{cases}$$

- Each class probability arises from exponentiating its own linear form
- Changing the baseline only alters coefficient representation & its interpretation, not the predicted probabilities

Alternatively, an equivalent *softmax* formulation treats all *K* classes symmetrically:

$$\Pr(Y = k \mid X = x) = \frac{\exp(\beta_{k,0} + \beta_{k,1} X_1 + \dots + \beta_{k,p} X_p)}{\sum_{k'=1}^{K} \exp(\beta_{k',0} + \beta_{k',1} X_1 + \dots + \beta_{k',p} X_p)}$$

Error rate

Definition: Fraction of observations that are misclassified

Error rate =
$$\frac{1}{n} \sum_{i=1}^{n} I(\hat{y}_i \neq y_i)$$

Bayes classifier:

$$X \mapsto \arg\max_{k} \Pr(Y = k \mid X)$$

- Optimal classifier that minimizes error rate in theory
- Usually impossible to compute in practice, since $Pr(Y \mid X)$ is unknown
- Question: Even if we could compute Bayes classifier, is the error rate always the best measure?
 - Some classification errors could be costlier than others
 - e.g., missing a cancer is worse than a false alarm

Confusion matrix: Binary classification

Let's consider **binary** classification (Y = 0 or 1)

		True default status		
		No	Yes	Total
Predicted	No	9432	138	9570
$default\ status$	Yes	235	195	430
	Total	9667	333	10000

Figure: An example confusion matrix for the Default dataset [JWHT21, Table 4.5].

Four possible outcomes:

- True positive (TP): predicted $\hat{Y}=1$ when Y=1 is true
- False negative (FN): predicted $\hat{Y}=0$ when Y=1 is true
- False positive (FP): predicted $\hat{Y}=1$ when Y=0 is true
- True negative (TN): predicted $\hat{Y}=0$ when Y=0 is true

Minimizing total error rate can be suboptimal if FP and FN have different costs

More on error metrics

		True class		
		– or Null	+ or Non-null	Total
Predicted	– or Null	True Neg. (TN)	False Neg. (FN)	N^*
class	+ or Non-null	False Pos. (FP)	True Pos. (TP)	\mathbf{P}^*
	Total	N	P	

Name	Definition	$\operatorname{Synonyms}$
False Pos. rate	FP/N	Type I error, 1—Specificity
True Pos. rate	TP/P	1—Type II error, power, sensitivity, recall
Pos. Pred. value	TP/P^*	Precision, 1-false discovery proportion
Neg. Pred. value	TN/N^*	

Figure: **Top:** Possible classification outcomes in a population. **Bottom:** Important measures for classification, derived from the confusion matrix [JWHT21, Tables 4.6 & 4.7].

Pop-up quiz #2: Error metrics

Question: In a binary classification with many more negatives than positives, why might we prefer measures like precision (TP/P^*) and sensitivity (TP/P) over overall error rate?

- A) Because error rate is always 50% in such cases, regardless of the classifier.
- B) Because false positives and false negatives are equally bad in all scenarios.
- C) Because error rate can be misleading when one class is rare, while precision/recall better capture performance on the minority class.
- D) Because if we have more negatives, the classifier rarely needs to predict Y=1.

Answer: (C) is correct: precision/sensitivity focus on performance for the minority class, which error rate can obscure.

Threshold selection

Many classifiers (e.g. logistic regression) produce $\hat{p}(x) = \Pr(Y = 1 \mid x)$

- If $\hat{p}(x) \ge p^*$, predict Y = 1, else 0
- Changing p* alters false positives and false negatives

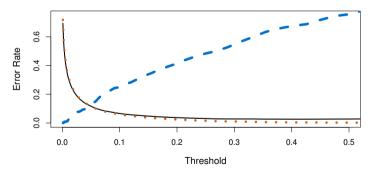


Figure: False positive (orange dotted) and false negative (blue dashed) error rates as a function of the threshold value p^* for the Default dataset [JWHT21, Figure 4.7].

Receiver operating characteristic (ROC) curve

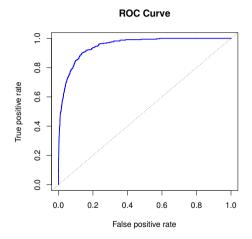


Figure: An example ROC curve, with AUC [JWHT21, Figure 4.8].

ROC curve

- ullet Plot TPR vs. FPR as p^* moves 0 o 1
 - TPR = $\frac{TP}{P} = \frac{TP}{TP+FN}$
 - $FPR = \frac{FP}{N} = \frac{FP}{TN + FP}$
- Summarize the performance via area under curve (AUC)

Area under curve (AUC)

- Reflects overall discriminative power across thresholds
 - Perfect classifier: AUC = 1
 - Random guess: AUC = 0.5

Wrap-up

Logistic regression:

- Extension to multiple predictors (p > 1)
 - Interpretation of coefficients
 - Linear decision boundary
- Extension to K > 2 classes (multinomial logistic)
 - Coefficients may differ if baseline class is changed, but predictions remain the same

Assessing classification:

- Error rate & the Bayes classifier
- Confusion matrix, FP/FN & threshold selection
- ROC curve, AUC

Next lecture: Generative models for classification (LDA, Naive Bayes)

References

Gareth James, Daniela Witten, Trevor Hastie, and Robert Tibshirani.

An Introduction to Statistical Learning: with Applications in R, volume 112 of Springer Texts in Statistics.

Springer, New York, NY, 2nd edition, 2021.