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Announcement

Midterm 1 in class on Fri, Apr 25 (12:10 pm - 1:00 pm)
• You may bring one sheet of letter-sized paper (8.5 × 11 inches), double-sided,

which can include formulas, brief notes, or any other relevant information
• Calculator: Simple calculators are allowed (no graphing function)
• No Textbook: Textbooks, reference books, or any other printed materials (beyond

the cheat sheet mentioned above) are not allowed
• SDC Accommodations: Please confirm an exam schedule with AES online

Resources for additional help & guidance
• Discussion sections
• Office hours
• Questions on Piazza
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Agenda

Last time: Simple logistic regression (p = 1, K = 2)

Today:
• Extensions of logistic regression

• Multiple logistic regression (p > 1)
• Multinomial logistic regression (K > 2)

• Assessing a classification method
• Error rate & the Bayes classifier
• Confusion matrix & false positives/negatives
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Recap: Simple logistic regression (p = 1, K = 2)

Model:
Pr(Y = 1 | X = x) = σ

(
β0 + β1x

)
=

exp
(
β0 + β1x

)
1 + exp

(
β0 + β1x

)
Where did it come from?

• We want to predict p(X ) = Pr[Y = 1 | X ] ∈ [0, 1] ... using a linear model of X
• We need a monotone increasing function p(X ) ∈ [0, 1] → f ◦ p(X ) ∈ R
• We model/assume the log-odds (logit) is linear in X :

log
( p(X )

1 − p(X )

)
= β0 + β1X

Interpreting coefficients:
• β0: log-odds at x = 0
• β1: a 1-unit increase in x multiplies the odds by eβ1
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Recap: Coefficient estimation & prediction

Maximum likelihood estimation (MLE):
• Given data (xi , yi) ∈ {0, 1}, pi = Pr(Yi = 1) = σ(β0 + β1xi)
• The likelihood function of (β0, β1) is

L(β0, β1) = Pr
(

(xi , yi)n
i=1︸ ︷︷ ︸

data at hand

; β0, β1︸ ︷︷ ︸
logistic model

)
=

n∏
i=1

p yi
i (1 − pi)(1−yi )

• Choose β̂0, β̂1 that maximizes L(β0, β1), typically by numerical methods

Making predictions: Once we have β̂0, β̂1,
• p̂(x) = σ(β̂0 + β̂1x)
• Typically predict Y = 1 if p̂(x) ≥ 0.5; Y = 0 otherwise
• Threshold 0.5 can be changed for a different value p∗ ∈ [0, 1]
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Multiple logistic regression (p > 1)

Model:
log

( p(X )
1 − p(X )

)
= β0 + β1X1 + · · · + βpXp

• The log-odds (=logit) is linear in X1, . . . , Xp

Coefficient interpretation:
• Each βi measures the effect of Xi on the log-odds of Y = 1, holding others fixed
• A 1-unit increase in Xi multiplies the odds by eβi when other predictors are controlled

Prediction rule: Once we obtain p(X ) = Pr(Y = 1 | X ), we classify via

Ŷ =
{

1 if p(X ) ≥ p∗,

0 otherwise.

where p∗ is a tunable parameter (typical choice = 0.5)
6 / 20



Decision boundary

Decision boundary: Observe that

p(X ) ≥ p∗ ⇐⇒ eβ0+β1X1+···+βpXp ≥ ln
( p∗

1 − p∗

)
⇐⇒ β0 + β1X1 + · · · + βpXp ≥ ln

( p∗

1 − p∗

)
• The decision boundary is the hyperplane

{
x⃗ ∈ Rp | β0 +

∑p
i=1 βixi = ln

(
p∗

1−p∗

)}
Visualization

• When p = 2, rearranging the terms gives the equation of a line in R2:

β2x2 = −β0 − β1x1 + ln
(

p∗

1 − p∗

)
if β2 ̸=0=⇒ x2 = −β1

β2
x1 − β0

β2
+ 1

β2
ln

(
p∗

1 − p∗

)
• In vector form, the equation β⃗1:p · x = −β0 + ln

( p∗

1−p∗

)
defines a hyperplane normal to β⃗1:p,

translated by 1
∥β⃗1:p∥

(
− β0 + ln

( p∗

1−p∗

))
from the origin along the direction of β⃗1:p
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Pop-up quiz #1: Logistic regression boundary in 2D

Scenario: Recall the decision boundary of a binary logistic regression model (with
p∗ = 0.5) is given by

β0 + β1X1 + β2X2 = 0
Question 1: Consider two separate changes to the coefficients:

• β1, β2 changes from (1, 1) to (2, 1). Will the boundary rotate clockwise or counterclockwise?
• β0 changes from 0 to −2. Will the boundary move upward or downward?

A) Rotate clockwise, boundary moves up
B) Rotate clockwise, boundary moves down
C) Rotate counterclockwise, boundary moves up
D) Rotate counterclockwise, boundary moves down

Question 2: How does the boundary change if we reduce p∗ from 0.5 to 0.1?

Answer: For Q1, (A). Increasing β1 (with β2 fixed) steepens the negative slope, rotating the line
clockwise. Lowering β0 from 0 to −2 shifts the boundary upward in (X1, X2) space. For Q2, reducing p∗

makes it easier to predict Y = 1, so the boundary adjusts downward to classify more points as positive.
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Example: The Default data set mystery

Figure: In the Default dataset, simple logistic regression shows a significantly positive
association between student and default, whereas multiple logistic regression yields a
significantly negative association [JWHT21, Tables 4.1 - 4.3].
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Explanation: Confounding by balance
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Figure: Confounding in the Default dataset. Left: default rates for students (orange) vs.
non-students (blue). Right: boxplots of balance distribution [JWHT21, Tables 4.1 - 4.3].

• Simple logistic: student seems positively related to default due to higher overall default rate
• Once balance is accounted for, students are less likely to default
• Contradiction arises from confounding by balance; students tend to carry higher balance
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Multinomial logistic regression (K > 2)

Illustration for the case with p = 1 and K = 3: Using k = 3 as the baseline, we
consider two separate logistic models, one for the pair (1, 3) and the other for (2, 3):

log
(p1(x)

p3(x)

)
= β1,0 + β1,1X =⇒ p1(X ) : p3(X ) = eβ1,0+β1,1X : 1

log
(p2(x)

p3(x)

)
= β2,0 + β2,1X =⇒ p2(X ) : p3(X ) = eβ2,0+β2,1X : 1

Normalizing by the sum1, we can express each pi(x) = Pr[Y = k | X = x ] as

p1(x) = eβ1,0+β1,1X

1 + eβ1,0+β1,1X + eβ2,0+β2,1X , p2(x) = eβ2,0+β2,1X

1 + eβ1,0+β1,1X + eβ2,0+β2,1X ,

p3(x) = 1
1 + eβ1,0+β1,1X + eβ2,0+β2,1X

1Recall Problem in your Homework 1!
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Multinomial logistic regression (K > 2)

More generally: Use class K as baseline, and model

log
( pk(x)

pK (x)

)
= βk,0 + βk,1X1 + · · · + βk,pXp for k = 1, . . . , K − 1

⇒ Pr(Y = k | X = x) =


exp(βk,0+βk,1X1+···+βk,pXp)

1+
∑K−1

k′=1 exp(βk′,0+βk′,1X1+···+βk′,pXp) , if k = 1, . . . , K − 1,

1
1+

∑K−1
k′=1 exp(βk′,0+βk′,1X1+···+βk′,pXp) , if k = K

• Each class probability arises from exponentiating its own linear form
• Changing the baseline only alters coefficient representation & its interpretation, not

the predicted probabilities

Alternatively, an equivalent softmax formulation treats all K classes symmetrically:

Pr(Y = k | X = x) = exp(βk,0 + βk,1X1 + · · · + βk,pXp)∑K
k′=1 exp

(
βk′,0 + βk′,1X1 + · · · + βk′,pXp

)
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Error rate

Definition: Fraction of observations that are misclassified

Error rate = 1
n

n∑
i=1

I(ŷi ̸= yi)

Bayes classifier:
X 7→ arg max

k
Pr(Y = k | X )

• Optimal classifier that minimizes error rate in theory
• Usually impossible to compute in practice, since Pr(Y | X ) is unknown
• Question: Even if we could compute Bayes classifier, is the error rate always the

best measure?
• Some classification errors could be costlier than others
• e.g., missing a cancer is worse than a false alarm
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Confusion matrix: Binary classification

Let’s consider binary classification (Y = 0 or 1)

Figure: An example confusion matrix for the Default dataset [JWHT21, Table 4.5].

Four possible outcomes:
• True positive (TP): predicted Ŷ = 1 when Y = 1 is true
• False negative (FN): predicted Ŷ = 0 when Y = 1 is true
• False positive (FP): predicted Ŷ = 1 when Y = 0 is true
• True negative (TN): predicted Ŷ = 0 when Y = 0 is true

Minimizing total error rate can be suboptimal if FP and FN have different costs
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More on error metrics

Figure: Top: Possible classification outcomes in a population. Bottom: Important measures
for classification, derived from the confusion matrix [JWHT21, Tables 4.6 & 4.7].
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Pop-up quiz #2: Error metrics

Question: In a binary classification with many more negatives than positives, why might
we prefer measures like precision (TP/P*) and sensitivity (TP/P) over overall error rate?

A) Because error rate is always 50% in such cases, regardless of the classifier.
B) Because false positives and false negatives are equally bad in all scenarios.
C) Because error rate can be misleading when one class is rare, while precision/recall

better capture performance on the minority class.
D) Because if we have more negatives, the classifier rarely needs to predict Y = 1.

Answer: (C) is correct: precision/sensitivity focus on performance for the minority class,
which error rate can obscure.
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Threshold selection

Many classifiers (e.g. logistic regression) produce p̂(x) = Pr(Y = 1 | x)
• If p̂(x) ≥ p∗, predict Y = 1, else 0
• Changing p∗ alters false positives and false negatives
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Figure: False positive (orange dotted) and false negative (blue dashed) error rates as
a function of the threshold value p∗ for the Default dataset [JWHT21, Figure 4.7].
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Receiver operating characteristic (ROC) curve
ROC Curve
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Figure: An example ROC curve, with AUC
[JWHT21, Figure 4.8].

ROC curve
• Plot TPR vs. FPR as p∗ moves 0 → 1

• TPR = TP
P = TP

TP+FN
• FPR = FP

N = FP
TN+FP

• Summarize the performance via area
under curve (AUC)

Area under curve (AUC)
• Reflects overall discriminative power

across thresholds
• Perfect classifier: AUC = 1
• Random guess: AUC = 0.5
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Wrap-up

Logistic regression:
• Extension to multiple predictors (p > 1)

• Interpretation of coefficients
• Linear decision boundary

• Extension to K > 2 classes (multinomial logistic)
• Coefficients may differ if baseline class is changed, but predictions remain the same

Assessing classification:
• Error rate & the Bayes classifier
• Confusion matrix, FP/FN & threshold selection
• ROC curve, AUC

Next lecture: Generative models for classification (LDA, Naive Bayes)
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