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Announcement

Homework 2 is due tomorrow (Tue, Apr 22) at 11:59 PM PT
• Please ensure your submission is properly formatted and submitted on time

(See HW instructions & syllabus; there will be a separate announcement on Canvas)

Midterm 1 is in class on Fri, Apr 25 (12:10 pm - 1:00 pm)
• You may bring one hand-written sheet of letter-sized paper (8.5 × 11 inches), double-sided

with formulas, brief notes, etc.
• Calculator: Simple (non-graphing) calculators only
• No textbooks or other materials beyond the single cheat sheet
• SDC accommodations: Confirm scheduling with AES online

Resources for additional help & guidance
• Practice midterm posted on course webpage
• Discussion sections
• Office hours (Instructor: Wed 4–5 pm, TA: Mon & Thu 1–2 pm)
• Questions on Piazza
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https://dogyoons.github.io/teaching/sta35c/exams/practice/STA035C_Mock_midterm1.pdf


Agenda

• (Recap) Logistic regression
• From log-odds to (conditional) probabilities
• Multinomial logistic regression (K ≥ 2)
• Decision boundary

• (Recap) Classification assessment
• Error rates & Bayes classifier
• Confusion matrix: False positives & false negatives
• ROC curve

• Generative models for classification
• Generative vs. discriminative models
• Why generative modeling?

• Linear discriminant analysis (LDA)
• Basics: p = 1 case & exntension to general p ≥ 1
• Example (p = 2)
• Parameter estimation
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Recap: Simple logistic regression (p = 1, K = 2)

Model:
log
(Pr[Y = 1 | X ]

Pr[Y = 0 | X ]

)
= β0 + β1X

or equivalently, Pr(Y = 1 | X = x) = σ
(
β0 + β1x

)
= exp

(
β0+β1x

)
1+exp

(
β0+β1x

)
What do we do with this? If the model is correct:

• For each X = x , “Y = 1” is eβ0+β1x times more likely than “Y = 0”
• That is,

Pr(Y = 1 | X = x) : Pr(Y = 0 | X = x) = eβ0+β1x : 1
• To convert this ratio into conditional probabilities, we normalize:

=⇒ Pr(Y = 1 | X = x) = eβ0+β1x

1 + eβ0+β1x and Pr(Y = 0 | X = x) = 1
1 + eβ0+β1x
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Recap: Extending logistic regression to p > 1

Extension to p > 1 is straightforward: Now we have

log
(Pr[Y = 1 | X ]

Pr[Y = 0 | X ]

)
= β0 + β1X1+ · · · + βpXp

What do we do with this?
• For each X = x , “Y = 1” is eβ0+β1x1+···+βpxp times more likely than “Y = 0”
• That is,

Pr(Y = 1 | X = x) : Pr(Y = 0 | X = x) = eβ0+β1x1+···+βpxp : 1

• Again, normalize to get conditional probabilities:

=⇒ Pr(Y = 1 | X = x) = eβ0+β1x1+···+βpxp

1 + eβ0+β1x1+···+βpxp
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Recap: Extending logistic regression to K > 2

If K = 3, we model two log-odds separately (with class 3 as reference):

log
(

Pr[Y =1|X ]
Pr[Y =3|X ]

)
= β1,0 + β1,1X1 + · · · + β1,pXp

log
(

Pr[Y =2|X ]
Pr[Y =3|X ]

)
= β2,0 + β2,1X1 + · · · + β2,pXp

• Note the double indices on coefficients: one for the response label (Y = 1, 2) and
another for the predictors (X1, . . . , Xp)

What do we do with these? (Assume p = 1 for simplicity)
• Letting pk(x) := Pr[Y = k | X = x ], we have

p1(x) : p2(x) : p3(x) = eβ1,0+β1,1x : eβ2,0+β2,1x : 1
• Again, normalize to obtain conditional probabilities (see Lecture 9, Slide 12):

=⇒ pk(x) = Pr(Y = k | X = x) = eβk,0+βk,1x

1 + eβ1,0+β1,1x + eβ2,0+β2,1x
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Recap: Decision boundary (K = 2)

Prediction rule: Once we have p(X ) = Pr(Y = 1 | X ), we predict

Ŷ =
{

1 if p(X ) ≥ p∗,

0 otherwise.

where p∗ (e.g., 0.5) is a tunable parameter

Under a logistic model:

p(x) ≥ p∗ ⇐⇒ log
(

p(x)
1−p(x)

)
≥ log

(
p∗

1−p∗

)
⇐⇒ β0 +

p∑
i=1

βixi ≥ log
(

p∗

1−p∗

)
For p = 2: if β2 > 0 (Question: What if β2 < 0 or β2 = 0?),

β0 + β1x1 + β2x2 ≥ log
( p∗

1 − p∗

)
=⇒ x2 ≥ −β1

β2
x1 + 1

β2

[
−β0 + log

( p∗

1 − p∗

)]
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Error rate

Error rate: Fraction of observations that are misclassified

Error rate = 1
n

n∑
i=1

I(ŷi ̸= yi)

Bayes classifier:
X 7→ arg max

k
Pr(Y = k | X )

• Optimal classifier that minimizes error rate in theory
• Usually impossible to compute in practice, since Pr(Y | X ) is unknown
• Question: Even if we could compute Bayes classifier, is the error rate always the

best measure?
• Some classification errors could be costlier than others
• e.g., missing a cancer is worse than a false alarm
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More on error metrics

Figure: Top: Possible classification outcomes in a population. Bottom: Important measures
for classification, derived from the confusion matrix [JWHT21, Tables 4.6 & 4.7].

Minimizing total error rate can be suboptimal if FP and FN have different costs
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Threshold selection

Many classifiers (e.g. logistic regression) produce p̂(x) = Pr(Y = 1 | x)
• If p̂(x) ≥ p∗, predict Y = 1, else 0
• Changing p∗ alters false positives and false negatives
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Figure: False positive (orange dotted) and false negative (blue dashed) error rates as
a function of the threshold value p∗ for the Default dataset [JWHT21, Figure 4.7].
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Receiver operating characteristic (ROC) curve

ROC Curve
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Figure: An example ROC curve, with AUC
[JWHT21, Figure 4.8].

ROC curve
• Plot TPR vs. FPR as p∗ moves 0 → 1

• TPR = TP
P = TP

TP+FN
• FPR = FP

N = FP
TN+FP

• Summarize the performance via area
under curve (AUC)

Area under curve (AUC)
• Reflects overall discriminative power

across thresholds
• Perfect classifier: AUC = 1
• Random guess: AUC = 0.5
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Discriminative vs. generative models

Discriminative (e.g. logistic regression):
• Directly model Pr(Y | X ), e.g., using a linear function
• Find a decision boundary in X -space that separates classes

Generative (e.g. LDA, Naive Bayes):
• Instead of modeling Pr(Y | X ) directly, model:

• The prior probability πk := Pr(Y = k) that a randomly chosen observation comes from
the k-th class

• The class-conditional density function fk(X ) := Pr(X | Y = k)1 of X for an observation
that comes from the k-th class

• Then use Bayes’ theorem to compute the posterior probability:

Pr(Y = k | X = x) = Pr(Y = k, X = x)
Pr(X = x) = πk fk(x)∑

j πj fj(x)
1Strictly speaking, the equality holds only when X is discrete; if X is continuous, fk(x) gives density
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Visualization of the workflow

Figure: A schematic contrast: discriminative approaches (black) directly learns Pr(Y |X), while generative
(gray) models Pr(X |Y ) and Pr(Y ) first, then obtains Pr(Y |X) via Bayes.
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Contrasting the two approaches

Both aim to estimate Pr(Y | X ), but:

Discriminative workflow:
• Postulate a functional form for

Pr(Y = 1 | X )
• Fit parameters from data
• Directly output p(x) = Pr(Y = 1|x)

Generative workflow:
• Postulate each class distribution fk(x)

• Key challenge: specifying X ’s
distribution per class

• Estimate πk = P(Y = k)
(often just the proportion in class k)

• Compute p(x) = Pr(Y =k | x) via
Bayes’ theorem

Key difference: Generative methods must model each fk(x), which can be more
demanding but can yield advantages if done correctly
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Why generative models?

Upsides:
• Well-separated classes: discriminative approaches (e.g., logistic regression) may

become unstable, while generative can be more robust
• If model assumption is correct: fewer data are needed for good performance
• K-class extension: straightforward via Bayes

Downsides:
• Must specify fk(x): can be difficult in high dimensions (p ≫ 1)
• If assumptions fail, performance may degrade
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Pop-up quiz #1: Generative vs. discriminative

Question: Which statement best describes a key advantage of a generative model (like
LDA) over a discriminative one (like logistic regression)?

A) Generative models need no distributional assumptions on X .
B) Discriminative models cannot be extended to K > 2 classes.
C) If the assumed fk(x) is correct, generative models can be data-efficient.
D) Generative models ignore class priors πk .

Answer: (C). Proper distribution assumptions can yield a data-efficiency advantage.

16 / 27



LDA basics: The p = 1 case

Assumptions:
• Y ∈ {1, . . . , K} classes, and πk = Pr[Y = k]
• X | (Y = k) ∼ N (µk , σ2), with same σ2 for all k

• Then the class-conditional density is

fk(x) = 1√
2π σ

exp
(

−(x − µk)2

2σ2

)

Figure: PDF of 1D Gaussian distribution (Image
from Wikipediaa).

a
https://en.wikipedia.org/wiki/Normal_distribution
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https://en.wikipedia.org/wiki/Normal_distribution
https://en.wikipedia.org/wiki/Normal_distribution


Decision boundary for p = 1

By Bayes’ theorem:
Pr(Y = k | x) = πk fk(x)∑K

j=1 πj fj(x)
where πk := Pr(Y = k) and fk(X ) := Pr(X | Y = k)

Bayes classifier: choose k maximizing Pr(Y = k | x)
• We find k that maximizes log (πk fk(x)); when σ2 is common across classes,

log (πk fk(x)) = log πk − log(
√

2πσ) − (x−µk)2

2σ2

= x · µk
σ2 − µ2

k
2σ2 + log πk︸ ︷︷ ︸

=:Linear discriminant function

− log(
√

2πσ) − x2

2σ2︸ ︷︷ ︸
we can ignore these

Linear discriminant function: We choose k with largest δk(x) := x · µk
σ2 − µ2

k
2σ2 + log πk ;

the boundary between class k and class j ̸= k is linear in x
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Extending LDA from p = 1 to p ≥ 1

General assumption:
• πk = P(Y = k)
• X ∈ Rp and X | (Y = k) ∼ N (µk , Σ); common covariance Σ, distinct µk
• The class-conditional density (multivariate Gaussian):

fk(x) = 1
(2π)p/2 |Σ|1/2 exp

(
−1

2(x − µk)⊤Σ−1(x − µk)
)

Discriminant function2:

δk(x) = x⊤Σ−1µk − 1
2µ⊤

k Σ−1µk + log πk

Again, the boundary between class k and class j ̸= k is linear in x
2Multi-dimensional extension of 1-dimensional version δk(x) = x · µk

σ2 − µ2
k

2σ2 + log πk
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Extension from p = 1 to p ≥ 1: Visualization of density

x1x1

x 2x 2

Figure: Illustration of multivariate Gaussian density functions for p = 2 Left: The two predictors are
uncorrelated. Right: The two variables have a correlation of 0.7 [JWHT21, Figure 4.5].
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Parameter estimation in LDA

Given training data {(xi , yi)}n
i=1:

• π̂k = nk
n , nk = #{yi = k}

• µ̂k = 1
nk

∑
i : yi =k xi

• Σ̂ = 1
n−K

∑K
k=1

∑
i : yi =k(xi − µ̂k)(xi − µ̂k)⊤

Then
δ̂k(x) = x⊤Σ̂−1µ̂k − 1

2 µ̂⊤
k Σ̂−1µ̂k + log π̂k ,

and predict arg maxk δ̂k(x).
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LDA example (p = 2, K = 2)

Scenario: Suppose K = 2 classes, X ∈ R2. We gather 8 total points:

User X1 X2 Class
1 1.2 2.5 1
2 1.8 2.9 1
3 2.2 3.2 1
4 3.0 4.0 1
5 3.5 4.2 2
6 4.0 5.0 2
7 4.3 5.2 2
8 4.5 5.6 2

• We’ll estimate π1, π2, µ1, µ2, and a common Σ.
• Then see how δ1(x) vs. δ2(x) forms a linear boundary in R2.
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LDA example: Parameter estimation

Class priors:
π̂1 = 4

8 , π̂2 = 4
8 .

Means:
µ̂1 =

[
x̄1,1
x̄1,2

]
, µ̂2 =

[
x̄2,1
x̄2,2

]
.

Covariance:

Σ̂ = 1
8 − 2

2∑
k=1

∑
i∈class k

(xi − µ̂k)(xi − µ̂k)⊤.

Compute numerically (in practice, one might use R).
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LDA example: Decision boundary

Discriminant functions:

δ̂1(x) = x⊤Σ̂−1µ̂1 − 1
2 µ̂⊤

1 Σ̂−1µ̂1 + log π̂1,

δ̂2(x) = x⊤Σ̂−1µ̂2 − 1
2 µ̂⊤

2 Σ̂−1µ̂2 + log π̂2.

The boundary is where δ̂1(x) = δ̂2(x), which rearranges to a linear equation in x1, x2.

Hence:

{x : δ̂1(x) = δ̂2(x)} ⇐⇒ (some linear function of x1, x2) = 0.

A straight line in R2 dividing class 1 and class 2.
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Pop-up quiz #2: LDA boundaries

Question: In LDA with p = 2 and K = 2 classes, why is the decision boundary always
linear?

A) Each class has its own covariance matrix, forcing a hyperplane boundary.
B) We assume the same Σ, so the quadratic parts cancel in the log ratio.
C) p = 2 is too small to allow curved boundaries.
D) LDA only applies to data that are linear in X .

Answer: (B). With one shared Σ, the (x − µk) quadratic terms cancel, leaving a linear
boundary.
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Wrap-up

Recapping logistic regression & classification assessment
• From log-odds model to conditional probabilities
• Decision boundary
• Confusion matrix: False positives/false negatives & ROC curve

Generative models:
• We model P(X | Y ) & P(Y ), then use Bayes to get P(Y | X )
• If assumptions hold, can be data-efficient

Linear discriminant analysis (LDA):
• Gaussian class-conditional with common Σ
• Linear boundaries
• Detailed example: p = 1 and p = 2
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