STA 35C: Statistical Data Science III

Lecture 10: Generative Models for Classification

Dogyoon Song

Spring 2025, UC Davis

Announcement

Homework 2 is due tomorrow (Tue, Apr 22) at 11:59 PM PT

 Please ensure your submission is properly formatted and submitted on time (See HW instructions & syllabus; there will be a separate announcement on Canvas)

Midterm 1 is in class on Fri, Apr 25 (12:10 pm - 1:00 pm)

- You may bring one **hand-written** sheet of letter-sized paper (8.5×11 inches), double-sided with formulas, brief notes, etc.
- Calculator: Simple (non-graphing) calculators only
- No textbooks or other materials beyond the single cheat sheet
- SDC accommodations: Confirm scheduling with AES online

Resources for additional help & guidance

- Practice midterm posted on course webpage
- Discussion sections
- Office hours (Instructor: Wed 4–5 pm, TA: Mon & Thu 1–2 pm)
- Questions on Piazza

Agenda

- (Recap) Logistic regression
 - From log-odds to (conditional) probabilities
 - Multinomial logistic regression $(K \ge 2)$
 - Decision boundary
- (Recap) Classification assessment
 - Error rates & Bayes classifier
 - Confusion matrix: False positives & false negatives
 - ROC curve
- Generative models for classification
 - Generative vs. discriminative models
 - Why generative modeling?
- Linear discriminant analysis (LDA)
 - Basics: p = 1 case & exptension to general $p \ge 1$
 - Example (p=2)
 - Parameter estimation

Recap: Simple logistic regression (p = 1, K = 2)

Model:

$$\log\left(\frac{\Pr[Y=1\mid X]}{\Pr[Y=0\mid X]}\right) = \beta_0 + \beta_1 X$$

or equivalently,
$$\Pr(Y = 1 \mid X = x) = \sigma(\beta_0 + \beta_1 x) = \frac{\exp(\beta_0 + \beta_1 x)}{1 + \exp(\beta_0 + \beta_1 x)}$$

What do we do with this? If the model is correct:

- For each X=x, "Y=1" is $e^{\beta_0+\beta_1x}$ times more likely than "Y=0"
- That is,

$$\Pr(Y = 1 \mid X = x) : \Pr(Y = 0 \mid X = x) = e^{\beta_0 + \beta_1 x} : 1$$

• To convert this ratio into conditional probabilities, we normalize:

$$\implies \Pr(Y = 1 \mid X = x) = \frac{e^{\beta_0 + \beta_1 x}}{1 + e^{\beta_0 + \beta_1 x}} \quad \text{and} \quad \Pr(Y = 0 \mid X = x) = \frac{1}{1 + e^{\beta_0 + \beta_1 x}}$$

Recap: Extending logistic regression to p > 1

Extension to p > 1 is straightforward: Now we have

$$\log \left(\frac{\Pr[Y=1 \mid X]}{\Pr[Y=0 \mid X]} \right) = \beta_0 + \beta_1 X_1 + \dots + \beta_p X_p$$

What do we do with this?

- For each X=x, "Y=1" is $e^{\beta_0+\beta_1x_1+\cdots+\beta_\rho x_\rho}$ times more likely than "Y=0"
- That is,

$$\Pr(Y = 1 \mid X = x) : \Pr(Y = 0 \mid X = x) = e^{\beta_0 + \beta_1 x_1 + \dots + \beta_p x_p} : 1$$

Again, normalize to get conditional probabilities:

$$\implies \Pr(Y = 1 \mid X = x) = \frac{e^{\beta_0 + \beta_1 x_1 + \dots + \beta_p x_p}}{1 + e^{\beta_0 + \beta_1 x_1 + \dots + \beta_p x_p}}$$

Recap: Extending logistic regression to K > 2

If K = 3, we model two log-odds *separately* (with class 3 as reference):

$$\log\left(\frac{\Pr[Y=1|X]}{\Pr[Y=3|X]}\right) = \beta_{1,0} + \beta_{1,1}X_1 + \dots + \beta_{1,p}X_p$$
$$\log\left(\frac{\Pr[Y=2|X]}{\Pr[Y=3|X]}\right) = \beta_{2,0} + \beta_{2,1}X_1 + \dots + \beta_{2,p}X_p$$

• Note the double indices on coefficients: one for the response label (Y = 1, 2) and another for the predictors (X_1, \ldots, X_p)

What do we do with these? (Assume p = 1 for simplicity)

• Letting $p_k(x) := \Pr[Y = k \mid X = x]$, we have

$$p_1(x): p_2(x): p_3(x) = e^{\beta_{1,0}+\beta_{1,1}x}: e^{\beta_{2,0}+\beta_{2,1}x}: 1$$

Again, normalize to obtain conditional probabilities (see Lecture 9, Slide 12):

$$\implies p_k(x) = \Pr(Y = k \mid X = x) = \frac{e^{\beta_{k,0} + \beta k, 1x}}{1 + e^{\beta_{1,0} + \beta_{1,1}x} + e^{\beta_{2,0} + \beta_{2,1}x}}$$

Recap: Decision boundary (K = 2)

Prediction rule: Once we have $p(X) = Pr(Y = 1 \mid X)$, we predict

$$\hat{Y} = \begin{cases} 1 & \text{if } p(X) \ge p^*, \\ 0 & \text{otherwise.} \end{cases}$$

where p^* (e.g., 0.5) is a tunable parameter

Under a logistic model:

$$p(x) \ge p^* \iff \log\left(\frac{p(x)}{1-p(x)}\right) \ge \log\left(\frac{p^*}{1-p^*}\right)$$

$$\iff \beta_0 + \sum_{i=1}^{p} \beta_i x_i \ge \log\left(\frac{p^*}{1-p^*}\right)$$

For
$$p = 2$$
: if $\beta_2 > 0$ (Question: What if $\beta_2 < 0$ or $\beta_2 = 0$?),

$$\beta_0 + \beta_1 x_1 + \beta_2 x_2 \ge \log\left(\frac{p^*}{1-p^*}\right) \implies x_2 \ge -\frac{\beta_1}{\beta_2} x_1 + \frac{1}{\beta_2} \left[-\beta_0 + \log\left(\frac{p^*}{1-p^*}\right)\right]$$

Error rate

Error rate: Fraction of observations that are misclassified

Error rate =
$$\frac{1}{n} \sum_{i=1}^{n} I(\hat{y}_i \neq y_i)$$

Bayes classifier:

$$X \mapsto \arg\max_{k} \Pr(Y = k \mid X)$$

- Optimal classifier that minimizes error rate in theory
- Usually impossible to compute in practice, since $Pr(Y \mid X)$ is unknown
- Question: Even if we could compute Bayes classifier, is the error rate always the best measure?
 - Some classification errors could be costlier than others
 - e.g., missing a cancer is worse than a false alarm

More on error metrics

		$True\ class$			
		– or Null	+ or Non-null	Total	
Predicted	– or Null	True Neg. (TN)	False Neg. (FN)	N*	
class	+ or Non-null	False Pos. (FP)	True Pos. (TP)	P^*	
	Total	N	P		

Name	Definition	Synonyms
False Pos. rate	FP/N	Type I error, 1—Specificity
True Pos. rate	$\mathrm{TP/P}$	1—Type II error, power, sensitivity, recall
Pos. Pred. value	TP/P^*	Precision, 1—false discovery proportion
Neg. Pred. value	TN/N^*	

Figure: **Top:** Possible classification outcomes in a population. **Bottom:** Important measures for classification, derived from the confusion matrix [JWHT21, Tables 4.6 & 4.7].

Minimizing total error rate can be suboptimal if FP and FN have different costs

Threshold selection

Many classifiers (e.g. logistic regression) produce $\hat{p}(x) = \Pr(Y = 1 \mid x)$

- If $\hat{p}(x) \ge p^*$, predict Y = 1, else 0
- Changing p* alters false positives and false negatives

Figure: False positive (orange dotted) and false negative (blue dashed) error rates as a function of the threshold value p^* for the Default dataset [JWHT21, Figure 4.7].

Receiver operating characteristic (ROC) curve

Figure: An example ROC curve, with AUC [JWHT21, Figure 4.8].

ROC curve

- ullet Plot TPR vs. FPR as p^* moves 0 o 1
 - TPR = $\frac{TP}{P} = \frac{TP}{TP+FN}$
 - $FPR = \frac{FP}{N} = \frac{FP}{TN + FP}$
- Summarize the performance via area under curve (AUC)

Area under curve (AUC)

- Reflects overall discriminative power across thresholds
 - Perfect classifier: AUC = 1
 - Random guess: AUC = 0.5

Discriminative vs. generative models

Discriminative (e.g. logistic regression):

- Directly model $Pr(Y \mid X)$, e.g., using a linear function
- Find a decision boundary in X-space that separates classes

Generative (e.g. LDA, Naive Bayes):

- Instead of modeling $Pr(Y \mid X)$ directly, model:
 - The *prior* probability $\pi_k := \Pr(Y = k)$ that a randomly chosen observation comes from the k-th class
 - The class-conditional density function $f_k(X) := \Pr(X \mid Y = k)^1$ of X for an observation that comes from the k-th class
- Then use Bayes' theorem to compute the posterior probability:

$$Pr(Y = k \mid X = x) = \frac{Pr(Y = k, X = x)}{Pr(X = x)} = \frac{\pi_k f_k(x)}{\sum_j \pi_j f_j(x)}$$

¹Strictly speaking, the equality holds only when X is discrete; if X is continuous, $f_k(x)$ gives density

Visualization of the workflow

Figure: A schematic contrast: discriminative approaches (**black**) directly learns Pr(Y|X), while generative (gray) models Pr(X|Y) and Pr(Y) first, then obtains Pr(Y|X) via Bayes.

Contrasting the two approaches

Both aim to estimate Pr(Y | X), but:

Discriminative workflow:

- Postulate a functional form for Pr(Y = 1 | X)
- Fit parameters from data
- Directly output p(x) = Pr(Y = 1|x)

Generative workflow:

- Postulate each class distribution $f_k(x)$
 - Key challenge: specifying X's distribution per class
- Estimate $\pi_k = P(Y = k)$ (often just the proportion in class k)
- Compute $p(x) = Pr(Y = k \mid x)$ via Bayes' theorem

Key difference: Generative methods must model each $f_k(x)$, which can be more demanding but can yield advantages if done correctly

Why generative models?

Upsides:

- **Well-separated classes**: discriminative approaches (e.g., logistic regression) may become unstable, while generative can be more robust
- If model assumption is correct: fewer data are needed for good performance
- K-class extension: straightforward via Bayes

Downsides:

- Must specify $f_k(x)$: can be difficult in high dimensions $(p \gg 1)$
- If assumptions fail, performance may degrade

Pop-up quiz #1: Generative vs. discriminative

Question: Which statement best describes a key advantage of a generative model (like LDA) over a discriminative one (like logistic regression)?

- A) Generative models need *no* distributional assumptions on X.
- B) Discriminative models cannot be extended to K > 2 classes.
- C) If the assumed $f_k(x)$ is correct, generative models can be data-efficient.
- D) Generative models ignore class priors π_k .

Answer: (C). Proper distribution assumptions can yield a data-efficiency advantage.

LDA basics: The p = 1 case

Assumptions:

- $Y \in \{1, ..., K\}$ classes, and $\pi_k = \Pr[Y = k]$
- $X \mid (Y = k) \sim \mathcal{N}(\mu_k, \sigma^2)$, with same σ^2 for all k
- Then the class-conditional density is

$$f_k(x) = \frac{1}{\sqrt{2\pi} \sigma} \exp\left(-\frac{(x - \mu_k)^2}{2\sigma^2}\right)$$

Figure: PDF of 1D Gaussian distribution (Image from Wikipedia^a).

a
https://en.wikipedia.org/wiki/Normal_distribution

Decision boundary for p = 1

By Bayes' theorem:

$$Pr(Y = k \mid x) = \frac{\pi_k f_k(x)}{\sum_{i=1}^{K} \pi_i f_i(x)}$$

where $\pi_k := \Pr(Y = k)$ and $f_k(X) := \Pr(X \mid Y = k)$

Bayes classifier: choose k maximizing $Pr(Y = k \mid x)$

• We find k that maximizes $\log (\pi_k f_k(x))$; when σ^2 is common across classes,

$$\log (\pi_k f_k(x)) = \log \pi_k - \log(\sqrt{2\pi}\sigma) - \frac{(x-\mu_k)^2}{2\sigma^2}$$

$$= \underbrace{x \cdot \frac{\mu_k}{\sigma^2} - \frac{\mu_k^2}{2\sigma^2} + \log \pi_k}_{\text{=:Linear discriminant function}} - \log(\sqrt{2\pi}\sigma) - \frac{x^2}{2\sigma^2}$$

$$= \lim_{x \to \infty} \operatorname{Linear discriminant function} \operatorname{we can ignore these}$$

Linear discriminant function: We choose k with largest $\delta_k(x) := x \cdot \frac{\mu_k}{\sigma^2} - \frac{\mu_k^2}{2\sigma^2} + \log \pi_k$; the boundary between class k and class $j \neq k$ is *linear* in x

Extending LDA from p = 1 **to** $p \ge 1$

General assumption:

- $\pi_k = P(Y = k)$
- $X \in \mathbb{R}^p$ and $X \mid (Y = k) \sim \mathcal{N}(\mu_k, \Sigma)$; common covariance Σ , distinct μ_k
- The class-conditional density (multivariate Gaussian):

$$f_k(x) = rac{1}{(2\pi)^{p/2} |\Sigma|^{1/2}} \exp\!\!\left(-rac{1}{2}(x-\mu_k)^{ op} \Sigma^{-1}(x-\mu_k)
ight)$$

Discriminant function²:

$$\delta_k(x) = x^{\top} \Sigma^{-1} \mu_k - \frac{1}{2} \mu_k^{\top} \Sigma^{-1} \mu_k + \log \pi_k$$

Again, the boundary between class k and class $j \neq k$ is linear in x

²Multi-dimensional extension of 1-dimensional version $\delta_k(x) = x \cdot \frac{\mu_k}{\sigma^2} - \frac{\mu_k^2}{2\sigma^2} + \log \pi_k$

Extension from p = 1 to $p \ge 1$: Visualization of density

Figure: Illustration of multivariate Gaussian density functions for p = 2 Left: The two predictors are uncorrelated. Right: The two variables have a correlation of 0.7 [JWHT21, Figure 4.5].

Parameter estimation in LDA

Given training data $\{(x_i, y_i)\}_{i=1}^n$:

- $\hat{\pi}_k = \frac{n_k}{n}$, $n_k = \#\{y_i = k\}$
- $\hat{\mu}_k = \frac{1}{n_k} \sum_{i: y_i = k} x_i$
- $\hat{\Sigma} = \frac{1}{n-K} \sum_{k=1}^{K} \sum_{i: y_i = k} (x_i \hat{\mu}_k) (x_i \hat{\mu}_k)^{\top}$

Then

$$\hat{\delta}_k(x) = x^\top \hat{\Sigma}^{-1} \hat{\mu}_k - \frac{1}{2} \hat{\mu}_k^\top \hat{\Sigma}^{-1} \hat{\mu}_k + \log \hat{\pi}_k,$$

and predict arg max_k $\hat{\delta}_k(x)$.

LDA example (p = 2, K = 2)

Scenario: Suppose K = 2 classes, $X \in \mathbb{R}^2$. We gather 8 total points:

User	X_1	X_2	Class
1	1.2	2.5	1
2	1.8	2.9	1
3	2.2	3.2	1
4	3.0	4.0	1
5	3.5	4.2	2
6	4.0	5.0	2
7	4.3	5.2	2
8	4.5	5.6	2

- We'll estimate $\pi_1, \pi_2, \mu_1, \mu_2$, and a common Σ .
- Then see how $\delta_1(x)$ vs. $\delta_2(x)$ forms a linear boundary in \mathbb{R}^2 .

LDA example: Parameter estimation

Class priors:

$$\hat{\pi}_1 = \frac{4}{8}, \quad \hat{\pi}_2 = \frac{4}{8}.$$

Means:

$$\hat{\mu}_1 = \begin{bmatrix} ar{x}_{1,1} \\ ar{x}_{1,2} \end{bmatrix}, \quad \hat{\mu}_2 = \begin{bmatrix} ar{x}_{2,1} \\ ar{x}_{2,2} \end{bmatrix}.$$

Covariance:

$$\hat{\Sigma} = \frac{1}{8-2} \sum_{k=1}^{2} \sum_{i \in \mathsf{class}} (x_i - \hat{\mu}_k) (x_i - \hat{\mu}_k)^{\top}.$$

Compute numerically (in practice, one might use R).

LDA example: Decision boundary

Discriminant functions:

$$\begin{split} \hat{\delta}_1(x) &= x^{\top} \hat{\Sigma}^{-1} \hat{\mu}_1 - \frac{1}{2} \hat{\mu}_1^{\top} \hat{\Sigma}^{-1} \hat{\mu}_1 + \log \hat{\pi}_1, \\ \hat{\delta}_2(x) &= x^{\top} \hat{\Sigma}^{-1} \hat{\mu}_2 - \frac{1}{2} \hat{\mu}_2^{\top} \hat{\Sigma}^{-1} \hat{\mu}_2 + \log \hat{\pi}_2. \end{split}$$

The boundary is where $\hat{\delta}_1(x) = \hat{\delta}_2(x)$, which rearranges to a linear equation in x_1, x_2 .

Hence:

$$\{\mathbf x: \hat{\delta}_1(\mathbf x) = \hat{\delta}_2(\mathbf x)\} \quad \Longleftrightarrow \quad (\text{some linear function of } x_1, x_2) = 0.$$

A straight line in \mathbb{R}^2 dividing class 1 and class 2.

Pop-up quiz #2: LDA boundaries

Question: In LDA with p=2 and K=2 classes, why is the decision boundary *always* linear?

- A) Each class has its own covariance matrix, forcing a hyperplane boundary.
- B) We assume the same Σ , so the quadratic parts cancel in the log ratio.
- C) p = 2 is too small to allow curved boundaries.
- D) LDA only applies to data that are linear in X.

Answer: (B). With one shared Σ , the $(x - \mu_k)$ quadratic terms cancel, leaving a linear boundary.

Wrap-up

Recapping logistic regression & classification assessment

- From log-odds model to conditional probabilities
- Decision boundary
- Confusion matrix: False positives/false negatives & ROC curve

Generative models:

- We model $P(X \mid Y) \& P(Y)$, then use Bayes to get $P(Y \mid X)$
- If assumptions hold, can be data-efficient

Linear discriminant analysis (LDA):

- ullet Gaussian class-conditional with common Σ
- Linear boundaries
- Detailed example: p = 1 and p = 2

References

Gareth James, Daniela Witten, Trevor Hastie, and Robert Tibshirani.

An Introduction to Statistical Learning: with Applications in R, volume 112 of Springer Texts in Statistics.

Springer, New York, NY, 2nd edition, 2021.