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Announcement

Homework 2 is due tomorrow (Tue, Apr 22) at 11:59 PM PT
® Please ensure your submission is properly formatted and submitted on time
(See HW instructions & syllabus; there will be a separate announcement on Canvas)

Midterm 1 is in class on Fri, Apr 25 (12:10 pm - 1:00 pm)
® You may bring one hand-written sheet of letter-sized paper (8.5 x 11 inches), double-sided
with formulas, brief notes, etc.
® Calculator: Simple (non-graphing) calculators only
® No textbooks or other materials beyond the single cheat sheet
® SDC accommodations: Confirm scheduling with AES online

Resources for additional help & guidance
® Practice midterm posted on course webpage
® Discussion sections
® Office hours (Instructor: Wed 4-5 pm, TA: Mon & Thu 1-2 pm)
® Questions on Piazza
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https://dogyoons.github.io/teaching/sta35c/exams/practice/STA035C_Mock_midterm1.pdf

Agenda

¢ (Recap) Logistic regression
® From log-odds to (conditional) probabilities
® Multinomial logistic regression (K > 2)
® Decision boundary
¢ (Recap) Classification assessment
® Error rates & Bayes classifier
® Confusion matrix: False positives & false negatives
e ROC curve
® Generative models for classification
® Generative vs. discriminative models
® Why generative modeling?
e Linear discriminant analysis (LDA)
® Basics: p =1 case & exntension to general p > 1
® Example (p = 2)
® Parameter estimation
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Recap: Simple logistic regression (p =1, K = 2)

Model:
| (Pr[Y =1]X]

Pr[Y:0|X]> = o+ fuX

or equivalently, Pr(Y =1 | X = x) = o(Bo + f1x) = m
exp | Bo+B1x

What do we do with this? If the model is correct:
® Foreach X =x, "Y = 1" is e%151% times more likely than “Y = 0"
® That is,
Pr(Y=1|X=x):Pr(Y=0]|X=x)=eothx.1
® To convert this ratio into conditional probabilities, we normalize:
eBo+PBix 1
— Pr(Yzl]X:x):w and Pr(YzO]X:x):w
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Recap: Extending logistic regression to p > 1

Extension to p > 1 is straightforward: Now we have

| <Pr[Y:1]X]

Ly =0 x]) ~ o B 450,

What do we do with this?
® Foreach X =x, "Y = 1" is efothxat+5% times more likely than "Y = 0"
® That is,

Pr(Y =1 ‘ X = x) : Pr(Y =0 ’ X = X) — eﬁo+5lx1+---+ﬁpo -1

® Again, normalize to get conditional probabilities:

ePotBixit+Bpxp
= PrY =1[X=x) =1 1 eBotBratBpxp
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Recap: Extending logistic regression to K > 2

If K =3, we model two log-odds separately (with class 3 as reference):
log (%) = B10+ PraXt+ -+ B1pXp
log (%) = Bo,0+ B2 X1+ -+ [2,pXp

¢ Note the double indices on coefficients: one for the response label (Y = 1,2) and
another for the predictors (X1, ..., Xp)

What do we do with these? (Assume p =1 for simplicity)
® Letting pk(x) == Pr[Y = k | X = x], we have

Pl(X) . P2(X) . p3(X) — eBrotBiix . oBaot+b21x .

® Again, normalize to obtain conditional probabilities (see Lecture 9, Slide 12):
eBrotBk1x

= plx) =Pr(Y = k[ X =x) = 1 4+ efrotBi1x  gb2,0+02,1x
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Recap: Decision boundary (K = 2)

Prediction rule: Once we have p(X) = Pr(Y =1 X), we predict
~ |0 otherwise.

where p* (e.g., 0.5) is a tunable parameter

Under a logistic model:

*

p(x) > p* <= log (1_”§f()x)) > log (lf,,*>

= B +§p:/8ixi > log <1f;*>

i=1

For p=2: if b >0 (Question: What if 8, <0 or 5, =07?),

*

* 1
fo + Pix1 + Paxo = |0g( P *> = x> —@xl + = {—50 + |0g< P
L—p f2 2 1-p
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Error rate

Error rate: Fraction of observations that are misclassified

10
E te = — 1(y;i i
rror rate ”,-51 (vi # vi)

Bayes classifier:
X — arg max Pr(Y = k| X)

e Optimal classifier that minimizes error rate in theory
¢ Usually impossible to compute in practice, since Pr(Y | X) is unknown

® Question: Even if we could compute Bayes classifier, is the error rate always the
best measure?

® Some classification errors could be costlier than others
® c.g., missing a cancer is worse than a false alarm
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More on error metrics

True class
— or Null + or Non-null Total

Predicted — or Null True Neg. (TN) | False Neg. (FN) N*
class + or Non-null | False Pos. (FP) | True Pos. (TP) p*

Total N P
Name Definition Synonyms
False Pos. rate FP/N | Type I error, 1—Specificity
True Pos. rate TP/P | 1-Type II error, power, sensitivity, recall
Pos. Pred. value TP/P* | Precision, 1—false discovery proportion
Neg. Pred. value TN/N*

Figure: Top: Possible classification outcomes in a population. Bottom: Important measures
for classification, derived from the confusion matrix [JWHT21, Tables 4.6 & 4.7].

Minimizing total error rate can be suboptimal if FP and FN have different costs
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Threshold selection

Many classifiers (e.g. logistic regression) produce p(x) = Pr(Y =1 x)

o If p(x) > p*, predict Y =1, else 0
e Changing p* alters false positives and false negatives
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Threshold
Figure: False positive ( ) and false negative (blue dashed) error rates as

a function of the threshold value p* for the Default dataset [JWHT21, Figure 4.7].
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Receiver operating characteristic (ROC) curve

ROC Curve

1.0

- ROC curve

i ® Plot TPR vs. FPR as p* moves 0 — 1

_TP_ _TP
*TPR= 5% = 757y

_ FP _ FP
* FPR =5 = m5rp
® Summarize the performance via area

under curve (AUC)

0.6 0.8

True positive rate
0.4
|

0.0
1

Area under curve (AUC)
T T T T T T
00 02 04 06 08 10 o Reflects overall discriminative power

False positive rate across thresholds

Figure: An example ROC curve, with AUC ® Perfect classifier: AUC =1
[JWHT21, Figure 4.8]. ® Random guess: AUC =05
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Discriminative vs. generative models

Discriminative (e.g. logistic regression):
¢ Directly model Pr(Y | X), e.g., using a linear function
® Find a decision boundary in X-space that separates classes

Generative (e.g. LDA, Naive Bayes):

® Instead of modeling Pr(Y | X) directly, model:
® The prior probability 7x := Pr(Y = k) that a randomly chosen observation comes from
the k-th class
® The class-conditional density function f,(X) = Pr(X | Y = k)! of X for an observation
that comes from the k-th class

® Then use Bayes' theorem to compute the posterior probability:
Pr(Y =k, X=x)  mxfi(x)

Pr(Y=k|X=x)= PriX=x)  X;mfi(x)

!Strictly speaking, the equality holds only when X is discrete; if X is continuous, fi(x) gives density
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Visualization of the workflow

Data 1 11 Discriminative 111
» P =Pr[Y=1]X]
0 0O X 0 00O X
X) = _a XHX )‘
‘ 1 11 Generative P 7y X foX) + m X f1(X)
‘/h(X)/‘—-""Pr(X | Y=‘ 0) ,fl(x) — pr(%( [Y=1) I
0 0O X .

Figure: A schematic contrast: discriminative approaches (black) directly learns Pr(Y|X), while generative

(gray) models Pr(X|Y) and Pr(Y) first, then obtains Pr(Y|X) via Bayes.
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Contrasting the two approaches

Both aim to estimate Pr(Y | X), but:

Discriminative workflow: Generative workflow:
® Postulate a functional form for ® Postulate each class distribution fi(x)
Pr(Y =1|X) e Key challenge: specifying X's

® Fit parameters from data distribution per class

® Directly output p(x) = Pr(Y = 1|x) ® Estimate 7 = P(Y = k)
(often just the proportion in class k)

e Compute p(x) = Pr(Y=k | x) via
Bayes' theorem

Key difference: Generative methods must model each fi(x), which can be more
demanding but can yield advantages if done correctly
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Why generative models?

Upsides:

¢ Well-separated classes: discriminative approaches (e.g., logistic regression) may
become unstable, while generative can be more robust

¢ |f model assumption is correct: fewer data are needed for good performance
e K-class extension: straightforward via Bayes
Downsides:

® Must specify fx(x): can be difficult in high dimensions (p > 1)
e If assumptions fail, performance may degrade
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Pop-up quiz #1: Generative vs. discriminative

Question: Which statement best describes a key advantage of a generative model (like
LDA) over a discriminative one (like logistic regression)?

A) Generative models need no distributional assumptions on X.
B) Discriminative models cannot be extended to K > 2 classes.
C) If the assumed fi(x) is correct, generative models can be data-efficient.

D) Generative models ignore class priors 7.

Answer: (C). Proper distribution assumptions can yield a data-efficiency advantage.
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LDA basics: The p =1 case

Assumptions:

e Ye{l,...,K} classes, and w4 = Pr[Y = K|
® X | (Y = k) ~ N(uk,c?), with same o2 for all k

® Then the class-conditional density is

x — 2
W00 = o (—( 20‘;"))

Figure: PDF of 1D Gaussian distribution (Image
from Wikipedia®).
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Decision boundary for p =1

By Bayes' theorem:
f
Pr(Y = k | x) = —2 k)

=17 fi(x)

where 7y = Pr(Y = k) and f,(X) =Pr(X | Y = k)
Bayes classifier: choose k maximizing Pr(Y = k | x)
® We find k that maximizes log (7« fx(x)); when o2

log (7 fi(x)) = log 7k — log(V2mo) — (X Uk)

P X
= x- ;—ﬁ—i—logﬂk—log(\/ o) — 252

=:Linear discriminant function we can ignore these

is common across classes,

2

Linear discriminant function: We choose k with largest dx(x) = x - &5 — 55 4 log 7y ;

the boundary between class k and class j # k is linear in x
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Extending LDA from p=1top>1

General assumption:
o 1= P(Y = K)
e XeRPand X | (Y = k) ~ N(uk, X); common covariance X, distinct fix

® The class-conditional density (multivariate Gaussian):

1

e ot i) T )

fk(X) = >

Discriminant function?:
_ 1 _
0(x) = x Tk — Sl Tk + log me

Again, the boundary between class k and class j # k is linear in x

2
’Multi-dimensional extension of 1-dimensional version dx(x) = x - & — & + log 7%
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Extension from p =1 to p > 1: Visualization of density

Figure: lllustration of multivariate Gaussian density functions for p = 2 Left: The two predictors are
uncorrelated. Right: The two variables have a correlation of 0.7 [JWHT21, Figure 4.5].
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Parameter estimation in LDA

Given training data {(x;,yi)}"q:
® jiy = nik Zi: yi=k Xi

s ﬁ Sho yimk (X — ) (xi — fu) "

and predict arg max d(x).
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LDA example (p =2, K = 2)

Scenario: Suppose K = 2 classes, X € R%. We gather 8 total points:

User

X1

X2

Class

1

O NO O~ WN

1.2
1.8
2.2
3.0
35
4.0
4.3
4.5

2.5
2.9
3.2
4.0
4.2
5.0
5.2
5.6

1

NN NDND R ==

e We'll estimate 7y, o, 1, ft2, and a common X.

® Then see how 61(x) vs. d2(x) forms a linear boundary in R2.

22/27



LDA example:

Parameter estimation

Class priors:

Means:

Covariance:

R 4 R 4
™ = g’ T2 = g
fu = X1 fi2 = X1
x12|’ X2.2
. 1 & -
=2 > (i a =)
8—2 )
k=1 i€eclass k

Compute numerically (in practice, one might use R).
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LDA example: Decision boundary

Discriminant functions:

S

b1(x) = x"E g — Spg £ + log 74,

N+~

Sa0) = x5 o — ST 5o + log o
The boundary is where d1(x) = §2(x), which rearranges to a linear equation in xq, xo.
Hence:
{x:81(x) = d2(x)} <= (some linear function of x1,x;) = 0.

A straight line in R? dividing class 1 and class 2.
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Pop-up quiz #2: LDA boundaries

Question: In LDA with p =2 and K = 2 classes, why is the decision boundary always
linear?

A) Each class has its own covariance matrix, forcing a hyperplane boundary.
B) We assume the same ¥, so the quadratic parts cancel in the log ratio.
C) p =2 is too small to allow curved boundaries.

D) LDA only applies to data that are linear in X.

Answer: (B). With one shared ¥, the (x — p) quadratic terms cancel, leaving a linear
boundary.
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Wrap-up

Recapping logistic regression & classification assessment
® From log-odds model to conditional probabilities
® Decision boundary
e Confusion matrix: False positives/false negatives & ROC curve

Generative models:
e We model P(X | Y) & P(Y), then use Bayes to get P(Y | X)
® |f assumptions hold, can be data-efficient

Linear discriminant analysis (LDA):
® Gaussian class-conditional with common X
® linear boundaries
® Detailed example: p=1and p=2
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