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Announcement

Midterm 1 is in class on Fri, Apr 25 (12:10 pm - 1:00 pm)
• Please plan to arrive early: The exam will start at 12:10 pm and end at 1:00 pm sharp
• You may bring one hand-written sheet of letter-sized paper (8.5 × 11 inches), double-sided

with formulas, brief notes, etc.
• Calculator: Simple (non-graphing) scientific calculators allowed
• No textbooks or other materials beyond the single cheat sheet
• SDC accommodations: Confirm scheduling with AES online

Resources for additional help & guidance
• Practice midterm posted on course webpage
• Discussion sections
• Office hours (Instructor: Wed 4–6 pm1, TA: Thu 1–2 pm)
• Questions on Piazza
1Extended hours for this week only
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https://dogyoons.github.io/teaching/sta35c/exams/practice/STA035C_Mock_midterm1.pdf


Agenda

• Generative models for classification
• Generative model approach
• Linear discriminant analysis (LDA)
• Overview of other models: QDA & Naive Bayes

• (If time permits) brief summary of what we have learned so far
• Probability basics
• Statistical learning
• Regression
• Classification
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Discriminative vs. generative models

Discriminative: Directly model Pr(Y | X ), e.g., logistic regression

Generative: Instead of modeling Pr(Y | X ) directly, use Bayes’ theorem:

Pr(Y = k | X = x) = Pr(Y = k, X = x)
Pr(X = x) = πk fk(x)∑

j πj fj(x)

where
• πk := Pr(Y = k): Prior probability that a randomly chosen observation is from the k-th class
• fk(X ) := Pr(X | Y = k)2: Class-conditional density of X for observations from the k-th class

Key difference: Generative methods must model each fk(x), which can be demanding
but can yield advantages if done correctly

2Strictly speaking, the equality holds only when X is discrete; if X is continuous, fk(x) gives density
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Visualization of the workflow

Figure: A schematic contrast: discriminative approaches (black) directly learns Pr(Y |X), while generative
(gray) models Pr(X |Y ) and Pr(Y ) first, then obtains Pr(Y |X) via Bayes.

5 / 18



LDA basics: The p = 1 case

Assumptions:
• For each class k = 1, . . . , K , the predictor X is Gaussian with mean µk and common

variance σ2

• That is, X | (Y = k) ∼ N (µk , σ2), so

fk(x) = 1√
2π σ

exp
(
−(x − µk)2

2σ2

)
To compute Pr(Y = k | X = x), we estimate:

• πk = Pr(Y = k)
• fk(x) = Pr(X = x | Y = k)

and use
Pr(Y = k | X = x) = Pr(Y = k, X = x)

Pr(X = x) = πk fk(x)∑K
j=1 πj fj(x)

.

Question: But do we need to compute the entire Pr(Y = k | X = x)?
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Linear discriminant function

Our goal is classification: To classify a new x , we pick k maximizing

Pr(Y = k | x) = πk fk(x)∑K
j=1 πj fj(x)

The denominator is constant for all k =⇒ Comparing the numerators πk fk(x) suffices

Taking log and rearranging terms:

log (πk fk(x)) = log πk − log
(√

2π σ
)

− (x − µk)2

2σ2

= x · µk
σ2 − µ2

k
2σ2 + log πk︸ ︷︷ ︸

=:Linear discriminant function

+
(
− log(

√
2π σ) − x2

2σ2

)
︸ ︷︷ ︸

terms independent of k

LDA assumes common σ2 across classes k =⇒ “ignored” terms do not affect the choice
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Parameter estimation in LDA

To compute the linear discriminant function

δk(x) = x · µk
σ2 − µ2

k
2σ2 + log πk

We need estimates of πk , µk , σ: Given training data {(xi , yi)}n
i=1,

π̂k = nk
n , where nk = #{yi = k}

µ̂k = 1
nk

∑
i : yi =k

xi

σ̂2 = 1
n − K

K∑
k=1

∑
i : yi =k

(
xi − µ̂k

)2

Extension to p ≥ 2: The same idea applies, but we use p-dimensional mean vectors µk
and p × p covariance matrix Σ, instead of scalars; see Lecture 10 (Slides 19–24)
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LDA example

Suppose we have 7 observations as follows (K = 2, p = 1):

ID x Class
1 1 1
2 2 1
3 3 1
4 5 2
5 6 2
6 6 2
7 7 2

Task:
• Classification: given a new x , predict the class y = k it likely belongs to
• For classification, we need to compute discriminant functions δ1(x) and δ2(x)
• For this computation, we need to estimate π1, π2, µ1, µ2, and σ2
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LDA example: 1) Parameter estimation

1) Class priors: 3 observations belong to class 1, and 4 observations belong to class 2

π̂1 = 3
7 , π̂2 = 4

7
2) Class means: Sample mean for each class

µ̂1 = 1 + 2 + 3
3 = 2, µ̂2 = 5 + 6 + 6 + 7

4 = 6

Common variance: Pooled sample covariance

σ̂2 = 1
n − K

2∑
k=1

∑
i :

yi =k

(xi − µ̂k)2 = 1
5

(
2 + 2

)
= 0.8

where (1) n − K = 5 as n = 7 and K = 2 and (2) the sum of squared deviations for each
class is given by

• Class 1: (1 − 2)2 + (2 − 2)2 + (3 − 2)2 = 1 + 0 + 1 = 2
• Class 2: (5 − 6)2 + (6 − 6)2 + (6 − 6)2 + (7 − 6)2 = 1 + 0 + 0 + 1 = 2
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LDA example: 2) Computing discriminants

Discriminant functions: for k = 1, 2, we plug in estimates

δk(x) = x µ̂k
σ̂2 − µ̂2

k
2 σ̂2 + log π̂k

Inserting
• π̂1 = 3

7 , π̂2 = 4
7 and

• µ̂1 = 2, µ̂2 = 6, and σ̂2 = 0.8
yields

δ1(x) = x µ̂1
0.8 − µ̂2

1
2 × 0.8 + log

(
3
7

)
δ2(x) = x µ̂2

0.8 − µ̂2
2

2 × 0.8 + log
(

4
7

)
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LDA example: 3) Classification and decision boundary

Decision rule: For a given x , we predict

Ŷ =
{

1 if δ1(x) ≥ δ2(x),
2 if δ1(x) < δ2(x)

Decision boundary: The decision rule above predicts Ŷ = 1 if and only if

δ1(x) ≥ δ2(x) ⇐⇒ x µ̂1
0.8 − µ̂2

1
2 × 0.8 + log

(
3
7

)
≥ x µ̂2

0.8 − µ̂2
2

2 × 0.8 + log
(

4
7

)
⇐⇒ µ̂1 − µ̂2

0.8 x − µ̂2
1 − µ̂2

2
2 × 0.8 +

(
log

(
3
7

)
− log

(
4
7

))
≥ 0

Here, µ̂1 − µ̂2 < 0, and hence, we can simplify this to

x − µ̂1 + µ̂2
2 + 0.8

µ̂1 − µ̂2
log

(
3
4

)
≤ 0 ⇐⇒ x ≤ µ̂1 + µ̂2

2 − 0.8
µ̂2 − µ̂1

log
(4

3

)
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LDA visualization (1D)
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Figure: (Left) Two one-dimensional normal density functions. The dashed vertical line is the Bayes
decision boundary. Right) Histograms of 20 observations from each class. The dashed vertical line
again shows the Bayes decision boundary, while the solid vertical line represents the LDA decision
boundary estimated from the training data [JWHT21, Figure 4.4].
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LDA visualization (2D)
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Figure: An illustration of LDA decision boundaries. Observations from each class are drawn from a
multivariate Gaussian distribution with p = 2, a class-specific mean vector, and a common covariance
matrix. (Left) Ellipses indicating the 95% probability region for each of the three classes, with dashed
lines showing the Bayes decision boundaries. (Right) 20 observations from each class, and the
corresponding LDA decision boundaries (solid black lines) [JWHT21, Figure 4.6].
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Additional generative approaches

Different modeling assumptions on classwise density fk lead to different methods.

Quadratic Discriminant Analysis (QDA)
• X | Y = k is Gaussian with mean µk and possibly different Σk
• The discriminant function is no longer linear in x :

δk(x) = −1
2(x − µk)⊤Σ−1

k (x − µk) − 1
2 log

∣∣Σk
∣∣ + log πk .

• QDA is more flexible but requires estimating more parameters

Naive Bayes
• For high-dimensional or discrete X , specifying fk(x) can be difficult
• Naive assumption: predictors Xj are conditionally independent given Y = k

=⇒ fk(x) =
∏p

j=1 fk,j(xj)
• Typically fast and often effective, but the independence assumption may not be valid
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Visual comparison between LDA and QDA
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Figure: A comparison of LDA and QDA decision boundaries. The Bayes (purple dashed),
LDA (black dotted), and QDA (green solid) boundaries are shown. LDA always produces
a linear boundary, whereas QDA can be curved [JWHT21, Figure 4.6].
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Wrap-up

Recap of classification:
• Classification problem: setup, objectives
• Logistic regression

• Model & interpretation of regression coefficients
• Parameter estimation via MLE
• Extensions: multiple predictors, multinomial
• Decision boundary

• Linear Discriminant Analysis
• Classification via a generative model
• Discriminant function

• Classification error
• Confusion matrix
• Choice of decision threshold
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