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Announcement

Midterm 1 solution and scores are available online
• Discussion tomorrow will review the midterm questions
• You may look over your graded exam there (pick it up at the start, return it at the end)

Grade disputes/adjustments
• If you believe your score should be changed for any question, please email the TA by noon on

Wednesday (April 30) with:
• The specific problem(s) you want regraded
• A clear explanation of why you believe you deserve a different score (e.g., pointing out

the key elements in your answer that match the official solution)

Mid-course survey
• Please take 10 minutes to complete the survey on Canvas
• All feedback and any constructive suggestions/requests are welcome
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Agenda

• Brief review of what we’ve covered:
• Supervised learning
• Regression
• Classification
• Model assessment & the bias-variance tradeoff

• Overview of what’s next (next three weeks):
• Resampling methods

Q: How can we estimate test MSE using training data?
Q: How can we enable inference beyond linear models?

• Model selection
Q: How can we systematically select relevant predictors?

• Multiple hypothesis testing
Q: What is the correct inferential framework after using data to select models?
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Recap: Supervised learning

X︸︷︷︸
predictors

→ Y︸︷︷︸
response

Goal: “Explain” or model Y using X
• Estimate f : X → Y so that y ≈ f (x)

Why?
• Prediction: e.g., forecasting sales, predicting house prices
• Inference: identifying significant predictors, relationships among variables

Depending on the type of Y ,
• Regression: Y is numeric
• Classification: Y is categorical
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Recap: Regression

Problem setup
X︸︷︷︸

predictors

−→ Y︸︷︷︸
numeric

∈ R

Goal: Estimate f : X → Y to fit a regression line (or curve)

For what?
• Prediction: Given xnew, predict ynew = f̂ (xnew)
• Inference: Estimate how X influences Y and assess significance

If we knew the distribution of (X , Y )...
• We might use Ŷ = E[Y | X ]
• In reality, we only have finite data, so we estimate from samples
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Linear regression: 1) Estimation & Prediction

Linear regression model: Y = β0 + β1X
• Simple and interpretable

Parameter estimation: Find β0, β1 that minimize

RSS = 1
n

n∑
i=1

(
yi − ŷi

)2 where ŷi = β0 + β1xi

Prediction: ŷnew = β̂0 + β̂1xnew

Model fit:
• R2 = 1 − RSS

TSS ∈ [0, 1]: proportion of variance in Y explained by the model
• Higher R2 indicates better explanatory power
• Adding more predictors always increases R2; R2

adj penalizes for extra variables
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Linear regression: 2) Inference

Significance test: Is β1 ̸= 0? (i.e., is X truly related to Y ?)
• Null hypothesis H0 : β1 = 0 (no linear relationship)
• If t = β̂1

SE(β̂1) in magnitude, we reject H0 and conclude significance

Why this test? You may have got a nonzero slope purely by luck, and want to verify it
• Under H0, β̂1

SE(β̂1) follows a t-distribution
• Observing a value far out in the tail suggests H0 is unlikely, so reject it
• If you see a moderate value, you may not be able to reject H0 (not enough evidence)

z 0.5 1.0 1.5 2.0 2.5 3.0 3.5

Approx. p-value 0.6171 0.3173 0.1336 0.0455 0.0124 0.0027 0.000465
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Linear regression: 3) Interpretation

Interpretation of β1:
• On average, Y changes by β1 per unit increase in X

• Individual outcomes may vary (noise)
• The true slope could differ across X if the relationship is not perfectly linear

• It does not imply causation; only correlation

Interpretation in multiple linear regression: Y = β0 + β1X1 + β2X2
• β1 is the effect of X1 holding X2 fixed (conditional effect)
• Confounding:

• β1,simple vs. β1,multiple may differ if X1 and X2 are correlated
- Why? β1,simple may include indirect effects through X2

• Including X2 in regression model can change the estimated effect of X1
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Recap: Classification

Problem setup
X︸︷︷︸

predictors

−→ Y︸︷︷︸
classes

∈ {0, 1}

Goal: Estimate f to define a decision boundary between classes

For what?
• Prediction: Given xnew, predict its class label
• Inference: Understand which predictors significantly affect the probability Pr(Y = 1)

Key ideas:
• If we knew Pr[Y = 1 | X ], we could classify Y = 1 if Pr[Y = 1 | X ] ≥ p∗

• In reality, we need to estimate Pr[Y = 1 | X ] from data, and use it
• Two approaches:

- Discriminative approach: directly model Pr[Y = 1 | X ]
- Generative approach: model Pr[X | Y ], then use Bayes’ theorem
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Logistic regression: A discriminative approach

Model:
log

(Pr[Y = 1|X ]
Pr[Y = 0|X ]

)
= β0 + β1X

• Similar to linear regression, but the response is the log-odds of Y = 1

Parameter estimation: Find β0, β1 that maximizes the likelihood

Likelihood(β0, β1) = Pr(data | β0, β1) =
n∏

i=1
Pr(yi | xi ; β0, β1)

• A higher likelihood means the observed data are more probable under the model

Prediction in two-steps:
• Calculate p̂new = σ(β̂0 + β̂1xnew), where σ(z) = 1

1+e−z

• Predict Y = 1 if p̂new ≥ p∗
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Example: Classifying 5 crabs via logistic regression

Data: 5 crabs, 2 species, single predictor (weight):

Species A (label 0): {1.5, 2.5} vs. Species B (label 1): {2.0, 3.0, 4.0}

Goal: Classify based on weight X

Fitted Model:

log
(pB(X )

pA(X )

)
= β0 + β1X =⇒ β̂0 ≈ −5.30, β̂1 ≈ 2.10

• Decision boundary near x ≈ 2.52
• One misclassification is unavoidable (points at 2.0 vs. 2.5)
• Best overall likelihood is achieved by this compromise
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Generative models for classification

Bayes’ theorem:

Pr[Y = 1 | X ] = Pr[Y = 1 & X ]
Pr[X ] = π1f1(x)

π0f0(x) + π1f1(x)

• πk = Pr[Y = k]: proportion of class k
• fk(x) = Pr[X = x | Y = k]: probability of X = x conditioned on class k

Classification rule:
• Choose class k that maximizes πk fk(x)
• Requires modeling assumptions for fk(x)
• Note that the marginal or prior probability for class k, πk , also matters
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Generative models for classification: Illustration

Figure: Generative classification compares likelihoods fk(x) weighted by πk (Source: ISLR2
Ch. 4 Slides https://hastie.su.domains/ISLR2/Slides/Ch4_Classification.pdf).

13 / 15

https://hastie.su.domains/ISLR2/Slides/Ch4_Classification.pdf


Linear discriminant analysis: A generative approach

To move forward, modeling assumption is required for fk(x) := Pr[X = x | Y = k]

Gaussian density assumption → LDA
• Assume fk(x) is Gaussian with mean µk and common variance σ2

• Then Pr[Y = k | X = x ] can be expressed using linear discriminant functions

δk(x) = µk
σ2 x − µ2

k
2σ2 + log πk

- Why this form?
k maximizes Pr[Y = 1 & X = x ] = πk fk(x) ⇐⇒ k maximizes log

(
πk fk(x)

)
- At any given X = x ,

log
(

Pr[Y = 1 | X = x ]
Pr[Y = 0 | X = x ]

)
= δ1(x) − δ0(x)

• Predict class k for which δk(x) is largest
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Example: Classifying 5 crabs via LDA

Data: 5 crabs, 2 species, single predictor (weight):
Species A (label 0): {1.5, 2.5} vs. Species B (label 1): {2.0, 3.0, 4.0}

Goal: Classify based on weight X

Steps:
• Estimate class priors: π̂A = 2

5 , π̂B = 3
5

• Estimate means: µ̂A = 1.5+2.5
2 = 2, µ̂B = 2+3+4

3 = 3
• Estimate common variance: σ̂2 = 1

5−2
[
(0.52 + 0.52) + (1.02 + 02 + 1.02)

]
= 5

6
• Form discriminants:

δA(x) = µA
σ2 x − µ2

A
2σ2 + log π̂A = 12

5 x − 12
5 + log

(
2
5

)
,

δB(x) = µB
σ2 x − µ2

B
2σ2 + log π̂B = 18

5 x − 27
5 + log

(
3
5

)
• Compare δA(x) vs. δB(x) to classify: δA(x) > δB(x) ⇐⇒ x < 5

2 − 5
6 log

(3
2
)
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