STA 35C: Statistical Data Science III

Lecture 13: Cross-Validation

Dogyoon Song

Spring 2025, UC Davis

Announcement

Homework 3 is posted

- Due Tue, May 6 by 11:59 PM
- Please review the problems early in case you have questions

Mid-course survey

- Please take 10 minutes to complete it on Canvas if you haven't yet
- All feedback and constructive suggestions are welcome
- Note on textbooks/additional resources:
 - We DO have a textbook; see the syllabus for any course details
 - The authors' slides are also available and may be helpful

Office hours

- Based on the survey, I plan to adjust office hours to (effective today onwards):
 - Wed, 4:30–5:30 pm
 - Thu, 2:30–3:00 pm (occasionally)

Today's topics

- Recap: Model assessment & the bias-variance tradeoff
- Motivation for resampling methods
- Key ideas in validation set approach
- Cross-validation techniques
 - Leave-one-out cross-validation (LOOCV)
 - k-fold cross-validation (\rightarrow coming next lecture)

Assessing models: 1) Error metrics

Regression models: Commonly use MSE (Mean Squared Error):

MSE =
$$\frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$
.

Lower MSE indicates a better fit

Classification models: Often use error rate:

$$Error Rate = \frac{\# Misclassified}{Total Sample Size}$$

- Lower error rate indicates a better fit
- False Positives (FP) vs. False Negatives (FN) may also matter
- A confusion matrix or ROC curve can help visualize these outcomes

Assessing models: 2) Bias-variance tradeoff

Training vs. test performance:

- We fit a model using training data to reduce training MSE (or error rate)
- However, it may not generalize well to new (test) data

Bias-variance tradeoff:

More flexible models tend to fit training data better, but can fail to generalize

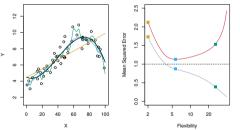


Figure: As model flexibility increases, training MSE typically goes down, while test MSE may go back up [JWHT21, Figure 2.9]

- High flexibility ⇒
 low bias but potentially high variance
- Low flexibility ⇒
 higher bias but lower variance

Open questions

We only have training data to fit our models, yet we want to:

- Estimate test performance (e.g., test MSE) to compare models
- Quantify uncertainty in the fitted model, akin to $SE(\hat{\beta}_i)$ in linear regression

Open questions:

- How can we estimate test error using only training data?
- How can we perform valid inference (e.g., confidence intervals, significance tests) for flexible or complex models beyond linear regression?

Resampling methods

Ideally, if we could draw fresh test data from nature, we would:

- Train on one dataset, then measure performance on a new test dataset
- Re-draw multiple training sets to gauge uncertainty in our estimates

However, this is rarely feasible

Resampling methods in a nutshell:

- Holdout approach: Split the existing training data so that one portion acts as a surrogate test set
 - \rightarrow Cross-validation (today)
- **Resampling:** Treat our training data as if it were the "population," creating synthetic samples to estimate variability
 - → The bootstrap (Friday; Lecture 14)

Validation set approach: 1) Basic ideas

Resampling viewpoint:

- In principle, we want to minimize test error, but we only have training data
- Training error ≠ test error in general
- Idea: Split the training data and hold out part for validation to estimate test error



Figure: Splitting n observations into a training set and a validation set. The model is fit on the training set and assessed on the validation set [JWHT21, Figure 5.1]

Validation set approach: 2) Procedure

- Step 1: Randomly split the data into "training" and "validation" sets
- Step 2: Fit the model on the training set only
- **Step 3:** Evaluate performance on the validation set (estimate validation error)

Example (No split)

Given $\{(5,12),(7,14),(12,17),(16,19)\}$ for linear regression, we can fit on all points and compute the training MSE.

$$\hat{\beta}_1 \approx 0.6216, \quad \hat{\beta}_0 \approx 9.284 \quad \Longrightarrow \quad \mathrm{MSE}_{\mathrm{train}} \approx 0.101.$$

However, we'd have no insight into test MSE, because we have no held-out data.

What if we split? See next slide.

Validation set approach: 3) Example

Example (Split)

Suppose we have the dataset $\{(5,12),(7,14),(12,17),(16,19)\}$ and want to do linear regression.

- Let's say we randomly choose (5, 12) and (12, 17) for training, and keep (7, 14) and (16, 19) for validation.
- Fitting a simple linear model on the training set:

$$\hat{\beta}_1 = \frac{17-12}{12-5} = \frac{5}{7} \approx 0.7143, \quad \hat{\beta}_0 \text{ from solving } 12 = 0.7143 \times 5 + \hat{\beta}_0 \implies \hat{\beta}_0 \approx 8.4286.$$

• Then predict on validation points:

$$\hat{y}_{(7)} = 8.4286 + 0.7143 \times 7 \approx 13.4286 \quad \text{(actual} = 14\text{)},$$

$$\hat{y}_{(16)} = 8.4286 + 0.7143 \times 16 \approx 19.8574$$
 (actual = 19).

Compute the validation MSE by averaging the squared errors:

$$\mathrm{MSE_{val}} = \frac{(14 - 13.4286)^2 + (19 - 19.8574)^2}{2} \approx 0.53.$$

Validation set approach: 4) The auto dataset

Recall the auto dataset from Lecture 5, relating mpg (Y) to horsepower (X):

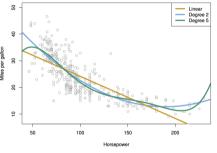


Figure: A scatter plot of the auto dataset suggests a noticeable non-linear relationship between mpg and horsepower [JWHT21, Figure 3.8].

We may consider a polynomial regression:

$$mpg \approx \beta_0 + \beta_1 horsepower + \cdots + \beta_p horsepower^p$$

Question: Should we add horsepower², horsepower³, ...? Up to what degree?

Validation set approach: 4) The auto dataset (cont'd)

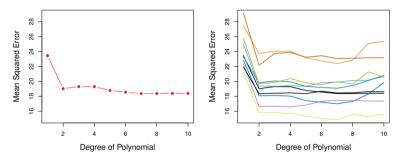


Figure: Using the validation set approach on the <u>auto</u> dataset to estimate test error for polynomial fits of <u>mpg</u> on <u>horsepower</u>. **Left:** Validation error for a single random split. **Right:** The same procedure repeated ten times with different random splits [JWHT21, Figure 5.2].

- Left: $\mathrm{MSE}_{\mathrm{val}}$ drops markedly (p: $1 \to 2$), indicating a simple linear model is suboptimal
- ullet Right: We observe a large variability in $\mathrm{MSE}_{\mathrm{val}}$ due to different random splits

Validation set approach: 5) Benefits and drawbacks

Benefits:

- Allows estimating test MSE from training data alone
- Applies to any learning method (no special assumptions needed)

Drawbacks:

- High variability: a single random split may not be representative
- Reduced training data size (some portion is "held out") can lead to less efficient model fitting

Question: How can we refine the validation set approach to address the two issues?

⇒ Cross-validation! (Split multiple times and aggregate results)

Leave-one-out cross-validation: 1) Basic ideas

Key ideas:

- For each observation, leave that single point as "validation," train on the remaining n-1 observations
- Repeat for all *n* points, giving *n* different estimates of validation error
- Average these n errors to approximate test error

Figure: Splitting a set of n data points into a training set of size n-1 and a validation set of size 1, done n times [JWHT21, Figure 5.3]

Leave-one-out cross-validation: 2) Procedure

Pseudocode:

- **For** i = 1 to n:
 - Remove observation *i* to form

$$\mathcal{D}_i = \{(x_1, y_1), \dots, (x_{i-1}, y_{i-1}), (x_{i+1}, y_{i+1}), \dots, (x_n, y_n)\}$$

- Fit the model (e.g., linear regression) on these n-1 points to get $\hat{f}_i:X\to Y$
- Compute the squared prediction error for the held-out observation *i*:

$$MSE_i = (y_i - \hat{f}_i(x_i))^2$$

• Average the *n* errors to obtain the **LOOCV** error:

$$\widehat{\text{MSE}}_{\text{LOOCV}} = \frac{1}{n} \sum_{i=1}^{n} \text{MSE}_{i}$$

Leave-one-out cross-validation: 3) Example

Example (3 data points)

Let our dataset be $\{(x_1, y_1) = (5, 12), (x_2, y_2) = (7, 14), (x_3, y_3) = (12, 17)\}.$

Step 1: Leave out $(x_1, y_1) = (5, 12)$.

• Train on $\{(7,14),(12,17)\}$.

$$\hat{\beta}_1 = \frac{17 - 14}{12 - 7} = \frac{3}{5} = 0.6, \quad 14 = 0.6 \times 7 + \hat{\beta}_0 \implies \hat{\beta}_0 = 14 - 4.2 = 9.8.$$

So model: $\hat{y} = 9.8 + 0.6 x$.

$$MSE_1 = (12 - \hat{y}(5))^2 = (12 - (9.8 + 0.6 \cdot 5))^2 = (12 - 12.8)^2 = 0.8^2 = 0.64.$$

(continues to the next slide)

Leave-one-out cross-validation: 3) Example (cont'd)

Example (3 data points)

(continued from the previous slide)

Step 2: Leave out $(x_2, y_2) = (7, 14)$. Similarly, we get

$$\hat{\beta}_1 \approx 0.7143, \quad \hat{\beta}_0 \approx 8.4286 \implies \text{MSE}_2 = (14 - \hat{y}(7))^2 \approx 0.3265.$$

Step 3: Leave out $(x_3, y_3) = (12, 17)$. Similarly, we get

$$\hat{\beta}_1 = 1, \quad \hat{\beta}_0 = 7 \implies \text{MSE}_3 = (17 - \hat{y}(12))^2 = 4.$$

Final:

$$\widehat{\rm MSE}_{\rm LOOCV} = \frac{\rm MSE_1 + MSE_2 + MSE_3}{3} = \frac{0.64 + 0.3265 + 4}{3} \approx \frac{4.9665}{3} \approx 1.6555.$$

Leave-one-out cross-validation: 4) the auto dataset

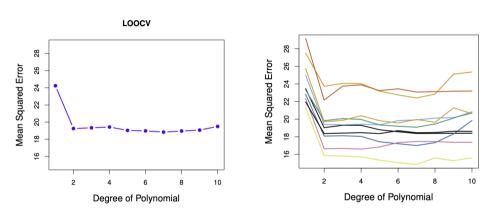


Figure: LOOCV applied to the Auto dataset for polynomial fits of mpg on horsepower. **Left:** LOOCV error curve. **Right:** Single-split validation repeated ten times [JWHT21, Figures 5.2 & 5.4].

• LOOCV yields a single test error estimate with no randomness in splitting

Leave-one-out cross-validation: 5) Pros and cons

Pros:

- Uses nearly all data for training (n-1) points each time
 - Better than the previous approach, where only $\sim \frac{n}{2}$ points were used
- No randomness from splitting; yields a single stable estimate

Cons:

• Requires fitting n separate models, which can be computationally expensive¹

Question: How can we retain the benefits of LOOCV, while reducing its cost?

 \Rightarrow *k*-**fold cross-validation** (Use fewer splits to reduce computational cost)

¹Note: Least squares linear regression has a closed-form shortcut for LOOCV, reducing computation

Wrap-up

Key takeaways:

- Model assessment relies on measuring performance beyond training data (e.g., test MSE, error rate)
- The bias-variance tradeoff explains why models that fit the training set closely may not generalize well to test data
- Resampling methods help us estimate test performance using only training data
 - Validation set approach: Simple but variable due to random splitting
 - LOOCV: Removes randomness and uses almost all data for training but is computationally expensive
 - k-fold CV (next lecture): A practical compromise between single-split validation and LOOCV

References

Gareth James, Daniela Witten, Trevor Hastie, and Robert Tibshirani.

An Introduction to Statistical Learning: with Applications in R, volume 112 of Springer Texts in Statistics.

Springer, New York, NY, 2nd edition, 2021.