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Announcement

Homework 3 is posted
• Due Tue, May 6 by 11:59 PM
• Please review the problems early in case you have questions

Mid-course survey
• Please take 10 minutes to complete it on Canvas if you haven’t yet
• All feedback and constructive suggestions are welcome
• Note on textbooks/additional resources:

• We DO have a textbook; see the syllabus for any course details
• The authors’ slides are also available and may be helpful

Office hours
• Based on the survey, I plan to adjust office hours to (effective today onwards):

• Wed, 4:30–5:30 pm
• Thu, 2:30–3:00 pm (occasionally)
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https://dogyoons.github.io/teaching/sta35c/homework/STA035C_Spring2025_Homework3.pdf
https://www.statlearning.com/
https://dogyoons.github.io/teaching/sta35c/files/STA035C_Spring2025_Syllabus.pdf


Today’s topics

• Recap: Model assessment & the bias-variance tradeoff

• Motivation for resampling methods

• Key ideas in validation set approach

• Cross-validation techniques
• Leave-one-out cross-validation (LOOCV)
• k-fold cross-validation (→ coming next lecture)
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Assessing models: 1) Error metrics

Regression models: Commonly use MSE (Mean Squared Error):

MSE = 1
n

n∑
i=1

(
yi − ŷi

)2
.

• Lower MSE indicates a better fit

Classification models: Often use error rate:

Error Rate = # Misclassified
Total Sample Size

• Lower error rate indicates a better fit
• False Positives (FP) vs. False Negatives (FN) may also matter
• A confusion matrix or ROC curve can help visualize these outcomes
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Assessing models: 2) Bias-variance tradeoff

Training vs. test performance:
• We fit a model using training data to reduce training MSE (or error rate)
• However, it may not generalize well to new (test) data

Bias-variance tradeoff:
• More flexible models tend to fit training data better, but can fail to generalize
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Figure: As model flexibility increases, training MSE
typically goes down, while test MSE may go back up
[JWHT21, Figure 2.9]

• High flexibility =⇒
low bias but potentially high variance

• Low flexibility =⇒
higher bias but lower variance
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Open questions

We only have training data to fit our models, yet we want to:
• Estimate test performance (e.g., test MSE) to compare models
• Quantify uncertainty in the fitted model, akin to SE(β̂i) in linear regression

Open questions:
• How can we estimate test error using only training data?
• How can we perform valid inference (e.g., confidence intervals, significance tests) for

flexible or complex models beyond linear regression?
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Resampling methods

Ideally, if we could draw fresh test data from nature, we would:
• Train on one dataset, then measure performance on a new test dataset
• Re-draw multiple training sets to gauge uncertainty in our estimates

However, this is rarely feasible

Resampling methods in a nutshell:
• Holdout approach: Split the existing training data so that one portion acts as a

surrogate test set
→ Cross-validation (today)

• Resampling: Treat our training data as if it were the “population,” creating
synthetic samples to estimate variability
→ The bootstrap (Friday; Lecture 14)
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Validation set approach: 1) Basic ideas

Resampling viewpoint:
• In principle, we want to minimize test error, but we only have training data
• Training error ̸= test error in general
• Idea: Split the training data and hold out part for validation to estimate test error

 !"!#!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!$!

%!!""!! #!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!& !

Figure: Splitting n observations into a training set and a validation set. The model is fit on the
training set and assessed on the validation set [JWHT21, Figure 5.1]
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Validation set approach: 2) Procedure

• Step 1: Randomly split the data into “training” and “validation” sets
• Step 2: Fit the model on the training set only
• Step 3: Evaluate performance on the validation set (estimate validation error)

Example (No split)
Given {(5, 12), (7, 14), (12, 17), (16, 19)} for linear regression, we can fit on all points and
compute the training MSE.

β̂1 ≈ 0.6216, β̂0 ≈ 9.284 =⇒ MSEtrain ≈ 0.101.

However, we’d have no insight into test MSE, because we have no held-out data.

What if we split? See next slide.
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Validation set approach: 3) Example

Example (Split)
Suppose we have the dataset {(5, 12), (7, 14), (12, 17), (16, 19)} and want to do linear regression.

• Let’s say we randomly choose (5, 12) and (12, 17) for training, and keep (7, 14) and (16, 19) for
validation.

• Fitting a simple linear model on the training set:

β̂1 = 17 − 12
12 − 5 = 5

7 ≈ 0.7143, β̂0 from solving 12 = 0.7143 × 5 + β̂0 =⇒ β̂0 ≈ 8.4286.

• Then predict on validation points:

ŷ(7) = 8.4286 + 0.7143 × 7 ≈ 13.4286 (actual = 14),

ŷ(16) = 8.4286 + 0.7143 × 16 ≈ 19.8574 (actual = 19).
Compute the validation MSE by averaging the squared errors:

MSEval = (14 − 13.4286)2 + (19 − 19.8574)2

2 ≈ 0.53.
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Validation set approach: 4) The auto dataset
Recall the auto dataset from Lecture 5, relating mpg (Y ) to horsepower (X ):

Figure: A scatter plot of the auto dataset suggests a noticeable non-linear
relationship between mpg and horsepower [JWHT21, Figure 3.8].

We may consider a polynomial regression:
mpg ≈ β0 + β1horsepower + · · · + βphorsepowerp

Question: Should we add horsepower2, horsepower3, ...? Up to what degree?
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Validation set approach: 4) The auto dataset (cont’d)
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Figure: Using the validation set approach on the auto dataset to estimate test error for polynomial
fits of mpg on horsepower. Left: Validation error for a single random split. Right: The same
procedure repeated ten times with different random splits [JWHT21, Figure 5.2].

• Left: MSEval drops markedly (p: 1 → 2), indicating a simple linear model is suboptimal
• Right: We observe a large variability in MSEval due to different random splits
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Validation set approach: 5) Benefits and drawbacks

Benefits:
• Allows estimating test MSE from training data alone
• Applies to any learning method (no special assumptions needed)

Drawbacks:
• High variability: a single random split may not be representative
• Reduced training data size (some portion is “held out”) can lead to less efficient

model fitting

Question: How can we refine the validation set approach to address the two issues?
⇒ Cross-validation! (Split multiple times and aggregate results)
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Leave-one-out cross-validation: 1) Basic ideas

Key ideas:
• For each observation, leave that single point as “validation,” train on the remaining

n − 1 observations
• Repeat for all n points, giving n different estimates of validation error
• Average these n errors to approximate test error
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Figure: Splitting a set of n data points into a training set of size n − 1 and a validation set
of size 1, done n times [JWHT21, Figure 5.3]

Placeholder figure:
Diagram splitting data n times

Figure: Conceptual view of LOOCV: each observation is held out exactly once.
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Leave-one-out cross-validation: 2) Procedure

Pseudocode:
• For i = 1 to n:

• Remove observation i to form

Di = {(x1, y1), . . . , (xi−1, yi−1), (xi+1, yi+1), . . . , (xn, yn)}

• Fit the model (e.g., linear regression) on these n − 1 points to get f̂i : X → Y
• Compute the squared prediction error for the held-out observation i :

MSEi =
(
yi − f̂i(xi)

)2

• Average the n errors to obtain the LOOCV error:

M̂SELOOCV = 1
n

n∑
i=1

MSEi
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Leave-one-out cross-validation: 3) Example

Example (3 data points)
Let our dataset be {(x1, y1) = (5, 12), (x2, y2) = (7, 14), (x3, y3) = (12, 17)}.

Step 1: Leave out (x1, y1) = (5, 12).
• Train on {(7, 14), (12, 17)}.

β̂1 = 17 − 14
12 − 7 = 3

5 = 0.6, 14 = 0.6 × 7 + β̂0 =⇒ β̂0 = 14 − 4.2 = 9.8.

So model: ŷ = 9.8 + 0.6 x .

MSE1 =
(
12 − ŷ(5)

)2 = (12 − (9.8 + 0.6 · 5))2 = (12 − 12.8)2 = 0.82 = 0.64.

(continues to the next slide)
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Leave-one-out cross-validation: 3) Example (cont’d)

Example (3 data points)
(continued from the previous slide)

Step 2: Leave out (x2, y2) = (7, 14). Similarly, we get

β̂1 ≈ 0.7143, β̂0 ≈ 8.4286 =⇒ MSE2 = (14 − ŷ(7))2 ≈ 0.3265.

Step 3: Leave out (x3, y3) = (12, 17). Similarly, we get

β̂1 = 1, β̂0 = 7 =⇒ MSE3 = (17 − ŷ(12))2 = 4.

Final:

M̂SELOOCV = MSE1 + MSE2 + MSE3
3 = 0.64 + 0.3265 + 4

3 ≈ 4.9665
3 ≈ 1.6555.

17 / 21



Leave-one-out cross-validation: 4) the auto dataset

Figure: LOOCV applied to the Auto dataset for polynomial fits of mpg on horsepower. Left: LOOCV
error curve. Right: Single-split validation repeated ten times [JWHT21, Figures 5.2 & 5.4].

• LOOCV yields a single test error estimate with no randomness in splitting
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Leave-one-out cross-validation: 5) Pros and cons

Pros:
• Uses nearly all data for training (n − 1 points each time)

• Better than the previous approach, where only ∼ n
2 points were used

• No randomness from splitting; yields a single stable estimate

Cons:
• Requires fitting n separate models, which can be computationally expensive1

Question: How can we retain the benefits of LOOCV, while reducing its cost?
⇒ k-fold cross-validation (Use fewer splits to reduce computational cost)

1Note: Least squares linear regression has a closed-form shortcut for LOOCV, reducing computation
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Wrap-up

Key takeaways:
• Model assessment relies on measuring performance beyond training data (e.g., test

MSE, error rate)

• The bias-variance tradeoff explains why models that fit the training set closely may
not generalize well to test data

• Resampling methods help us estimate test performance using only training data
• Validation set approach: Simple but variable due to random splitting
• LOOCV: Removes randomness and uses almost all data for training but is

computationally expensive
• k-fold CV (next lecture): A practical compromise between single-split

validation and LOOCV
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