
STA 35C: Statistical Data Science III
Lecture 14: k-fold Cross-Validation and the Bootstrap

Dogyoon Song

Spring 2025, UC Davis

1 / 24



Announcement

Homework 3 is due next Tuesday (May 6, 11:59 pm PT)
• Submit any 2 of Problems 1–3, plus Problems 4 and 5
• A new subproblem, 3(e), is added after the first release

Mid-course survey
• Thank you for your constructive feedback and requests
• I’ll accommodate some requests, e.g., slow the pace, add more examples, reduce HW

workload, etc.
• I cannot accommodate some requests, e.g., video recording

• The authors’ slides and YouTube lectures may be helpful
• Please follow the syllabus, announcements, and Piazza for supplementary notes
• If you’re struggling with this course, let me know how I can help, and/or come see me

Office hours
• Regular: Wednesdays, 4:30–5:30 pm
• Extra, occasional (Thu 2:30–3:00 pm): May 8, May 22, May 29
• TA office hours: Mon/Thu 1-2 pm

2 / 24

https://dogyoons.github.io/teaching/sta35c/homework/STA035C_Spring2025_Homework3.pdf
https://www.youtube.com/watch?v=LvySJGj-88U&list=PLoROMvodv4rOzrYsAxzQyHb8n_RWNuS1e


Today’s topics

• Brief recap:
• Validation set (hold-out) for estimating test MSE
• Leave-one-out cross-validation (LOOCV)

• k-fold cross-validation

• The bootstrap: quantifying uncertainty via resampling

3 / 24



Recap: Validation set approach

Holdout for validation:
• Training error ̸= test error in general
• Idea: Split the training data and hold out part for validation to estimate test error

 !"!#!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!$!

%!!""!! #!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!& !

Figure: Splitting n observations into a training set and a validation set. The model is fit on the
training set and assessed on the validation set [JWHT21, Figure 5.1]

4 / 24



Recap: Leave-one-out cross-validation (LOOCV)

Key ideas:
• For each observation, leave that single point as “validation,” train on the remaining

n − 1 observations.
• Repeat for all n points, giving n different estimates of validation error.
• Average these n errors to approximate test error.

 !"!#!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!$!

 !"!#!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!$!

 !"!#!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!$!

 !"!#!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!$!

 !"!#!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!$!

%!

%!

%!

Figure: A set of n data points is repeatedly split into a training set of size n − 1 and a validation set
of size 1. The test error is estimated by averaging the n partial MSEs [JWHT21, Figure 5.3]

Placeholder figure:
Diagram splitting data n times

Figure: Conceptual view of LOOCV: each observation is held out exactly once.

5 / 24



Recap: Single validation vs. LOOCV

Validation (single split):
• Enables estimating test MSE from training data alone & widely applicable
• Highly variable across random splits & training is less efficient due to fewer data

points in the training subset

LOOCV:
• Removes randomness of splitting; each model is trained on n − 1 samples
• Computationally expensive: requires fitting n models

To mitigate the computational burden:
Use fewer splits to reduce computational cost =⇒ k-fold cross-validation

6 / 24



k-fold cross-validation: 1) Basic ideas

Key ideas:
• Randomly partition the observations into k groups (folds) of roughly equal size
• LOOCV is a special case of k-fold CV with k = n
• In practice, common choices are k = 5 or k = 10

 !"!#!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!$!

  !%&!'!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!(%!

  !%&!'!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!(%!

  !%&!'!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!(%!  !%&!'!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!(%!

  !%&!'!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!(%!

  !%&!'!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!(%!

Figure: A schematic of 5-fold CV. The data are split into five non-overlapping groups:
one as the validation set and the remainder as the training set [JWHT21, Figure 5.5].

7 / 24



k-fold cross-validation: 2) Procedure

Pseudocode:
• Randomly partition the data into k folds

• For each fold j = 1, . . . , k:
• Take fold j as the validation set
• Combine the other k − 1 folds into a training set and fit the model on it
• Compute validation error MSEj on fold j

• Estimate test MSE by averaging:

M̂SECV = 1
k

k∑
j=1

MSEj

8 / 24



k-fold cross-validation: 3) Example (2-fold, 4 data points)

Example (2-fold CV)
Let our dataset be {(5, 12), (7, 14), (12, 17), (16, 19)} and choose k = 2:

• Fold 1 (Validation): (5, 12), (12, 17)
• Fold 2 (Validation): (7, 14), (16, 19)

Step 1: Train on Fold 2, validate on Fold 1.

Training set: {(7, 14), (16, 19)}.

β̂1 = 19 − 14
16 − 7 = 5

9 ≈ 0.556, 14 = 0.556 × 7 + β̂0 =⇒ β̂0 ≈ 10.108.

Hence, ŷ = 10.108 + 0.556 x .

ŷ(5) = 10.108 + 0.556 × 5 = 10.108 + 2.780 ≈ 12.888 (actual = 12),
ŷ(12) = 10.108 + 0.556 × 12 = 10.108 + 6.672 ≈ 16.780 (actual = 17).

MSE1 = (12 − 12.888)2 + (17 − 16.780)2

2 = (−0.888)2 + (0.220)2

2 = 0.789 + 0.048
2 = 0.419.

9 / 24



k-fold cross-validation: 3) Example (cont’d)

Example (2-fold CV continued)
Step 2: Train on Fold 1, validate on Fold 2.

Training set: {(5, 12), (12, 17)}.

β̂1 = 17 − 12
12 − 5 = 5

7 ≈ 0.7143, 12 = 0.7143 × 5 + β̂0 =⇒ β̂0 ≈ 8.4286.

Hence, ŷ = 8.4286 + 0.7143 x .
On the validation points {(7, 14), (16, 19)}:

ŷ(7) = 8.4286 + 0.7143 × 7 ≈ 13.4286 (actual = 14),

ŷ(16) = 8.4286 + 0.7143 × 16 ≈ 19.8574 (actual = 19).

MSE2 = (14 − 13.4286)2 + (19 − 19.8574)2

2 ≈ (0.5714)2 + (−0.8574)2

2 = 0.3265 + 0.7351
2 ≈ 0.5308.

Final 2-fold CV error:

M̂SECV = MSE1 + MSE2

2 ≈ 0.4199 + 0.5308
2 ≈ 0.4754.

10 / 24



k-fold cross-validation: 4) the auto dataset

2 4 6 8 10

1
6

1
8

2
0

2
2

2
4

2
6

2
8

LOOCV

Degree of Polynomial

M
e
a
n
 S

q
u
a
re

d
 E

rr
o
r

2 4 6 8 10

1
6

1
8

2
0

2
2

2
4

2
6

2
8

10−fold CV

Degree of Polynomial
M

e
a
n
 S

q
u
a
re

d
 E

rr
o
r

Figure: k-fold CV on the Auto dataset for polynomial fits of mpg on horsepower. Left: LOOCV
error curve, Center: k = 10 CV curve, Right: single-split validation repeated ten times
[JWHT21, Figures 5.2 & 5.4].

• k-fold CV offers a balance between single-split validation and LOOCV
11 / 24



k-fold cross-validation: 5) Pros and cons

Pros:
• Reduced variability compared to a single-split validation
• Fewer models to fit than LOOCV (esp. when k ≪ n), lowering computational cost
• Each fold uses k−1

k · n points for training

Cons:
• Still computationally more expensive than a single-split approach
• Some randomness persists when compared to LOOCV

12 / 24



Recall: Sampling distribution

Coin flip example: Suppose we want to estimate p = Pr(X = 1), the probability of Head

We can flip a coin 10 times and compute p̂ = X̄ = 1
10

∑10
i=1 Xi to estimate p

Trial 1: 6 Heads, 4 Tails ⇒ p̂1 = 0.6

Trial 2: 4 Heads, 6 Tails ⇒ p̂2 = 0.4

...
13 / 24



Recall: Sampling distribution

As we repeat many trials, we obtain a distribution of p̂ (or equivalently X̄ ):

Figure: Histogram of 1000 sample means from
10 coin flips (p = 0.5).

This is called the sampling distribution of p̂
• The estimate p̂ from a random sample is

itself a random variable!
• Its variance reflects the uncertainty in p̂

SE(p̂) =

√√√√ 1
B − 1

B∑
b=1

(p̂b − p̄)2

- In this example (see left), B = 1000,
p̄ = 1

1000
∑

p̂i = 0.499
- This calculation requires 1000 fresh

samples! (which we usually do not have)

14 / 24



Challenge: We have only “one” sample in practice

In most practical scenarios, we only have a single sample (=dataset)

Trial 1: 6 Heads, 4 Tails ⇒ p̂1 = 0.6

Question: How can we approximate the sampling distribution and estimate SE(p̂), using
only this single sample?

Answer: The bootstrap
We can “sample” from this given dataset to generate fresh, synthetic samples

15 / 24



The Bootstrap: 1) Motivation

Reasoning behind the bootstrap:
• We often want to measure the uncertainty of an estimate (mean, regression

coefficients, etc.)
• Some estimates have known standard error formulas (like the sample mean in a

simple scenario), but these rely on assumptions that may fail
• In more complex scenarios (e.g., optimal portfolios, complex regression), we may not

have closed-form SE formulas for SE

Goal: Estimate uncertainty without strong parametric assumptions, by reusing our one
dataset as if it were the population

Question: How do we resample to create synthetic samples from our data?

16 / 24



The Bootstrap: 2) (Re-)sampling with replacement

Core idea: Treat our dataset as an empirical approximation of the population

2.8 5.3 3 

1.1 2.1 2 

2.4 4.3 1 

Y X Obs 

2.8 5.3 3 

2.4 4.3 1 

2.8 5.3 3 

Y X Obs 

2.4 4.3 1 

2.8 5.3 3 

1.1 2.1 2 

Y X Obs 

2.4 4.3 1 

1.1 2.1 2 

1.1 2.1 2 

Y X Obs 

Original Data (Z) 

1*
Z

2*
Z

Z
*B

1*α̂

2*α̂

α̂*B

!!

!!

!!

!!

!

!!

!!

!!

!!

!!

!!

!!

!!

Figure: Illustration of the bootstrap for n = 3
observations. Each bootstrap dataset yields an
estimate of α [JWHT21, Figure 5.11].

• Draw resamples of size n with
replacement from the dataset

• Compute the statistic (mean, regression
coefficient, etc.) each time

• The spread of these “bootstrap
statistics” approximates the sampling
distribution (and hence the SE)

17 / 24



The Bootstrap: 3) Procedure

Pseudocode: To estimate parameter α (e.g., sample mean, slope),
• Let Z = {Z1, Z2, . . . , Zn} be our observed data (of size n)
• For b = 1 to B:

• Sample n observations with replacement from Z , call that Z ∗
b

• Compute α̂∗
b = f (Z ∗

b )

Bootstrap SE formula:

SEB(α̂) =

√√√√ 1
B − 1

B∑
b=1

(
α̂∗

b − α̂∗
)2

where α̂∗ = 1
B

B∑
b=1

α̂∗
b

• Note that this is simply the sample standard deviation of {α̂∗
1, . . . , α̂∗

B}

18 / 24



Bootstrap: 4) An example of sample mean

Observed dataset (n=5):
x = {2.1, 3.5, 1.8, 2.7, 3.2}.

We want to estimate µ = E[X ] and its uncertainty, namely, SE(µ̂).

• Original sample mean:

x̄ = 2.1 + 3.5 + 1.8 + 2.7 + 3.2
5 ≈ 2.66

• Bootstrap replicates (B = 1000):
• Draw 5 points with replacement from x to form each x∗

b .
• Compute x̄∗

b for each.
• For example,

• Sample 1: {2.1, 2.1, 3.5, 2.7, 3.2} =⇒ x̄∗
1 = 2.72

• Sample 2: {3.5, 1.8, 1.8, 3.2, 3.2} =⇒ x̄∗
2 = 2.70

• Distribution of x̄∗
b : Yields an approximate sampling distribution for x̄ .

19 / 24



Bootstrap: 4) An example of sample mean (R script)

# Define the observed dataset
x <- c(2.1, 3.5, 1.8, 2.7, 3.2)
n <- length(x)

# Number of bootstrap reps
B <- 1000

# Compute the original sample mean
original_mean <- mean(x)

# Initialize a vector
boot_means <- numeric(B)

# Perform the bootstrap
for (b in 1:B) {

x_star <- sample(x, n, replace=TRUE)
boot_means[b] <- mean(x_star)

}

# Plot histogram of bootstrap means
hist(boot_means,

main="Bootstrap Sample Means",
xlab="Bootstrapped Mean",
col="skyblue",
border="white")

# Add vertical line for original mean
abline(v=original_mean, col="red", lwd=2)

# Label original mean
text(x=original_mean,

y=par("usr")[4]*0.9,
labels=paste("Original mean:",

round(original_mean,3)),
pos=4,
col="red")

• Alternatively, use boot() in the “boot” package for built-in methods; see [JWHT21, Ch 5.3.4].
20 / 24



Bootstrap: 4) An example of sample mean (histogram)

Figure: Histogram of 1000 bootstrap sample means for the example dataset.

Interpretation:
• The center is near x̄ ≈ 2.66
• The spread shows how x̄ might vary if we repeatedly sampled from the (unknown) population

21 / 24



Bootstrap: 6) Pros and Cons

Pros:
• Requires minimal assumptions about the population distribution
• Straightforward to implement for many statistics (means, regression coefficients, etc.)
• Flexible for constructing confidence intervals via percentile methods, etc.

Cons:
• Potentially expensive for large n or complex models (because B can be large)
• Relies on the observed sample being representative of the true population

(garbage in, garbage out)
• Less straightforward if data are highly dependent or from complex sampling designs

22 / 24



Wrap-up & Takeaways

• Validation & Cross-Validation:
• Single-split validation is simple but can vary a lot with random splits
• LOOCV removes randomness but is expensive
• k-fold CV strikes a balance between variance and computation

• Bootstrap:
• Resamples from dataset to approximate the sampling distribution of an estimate
• Widely used to get SEs and confidence intervals with minimal assumptions
• Particularly helpful for complex or unknown distributions
• Relies on the observed sample being representative of the true population

23 / 24



References

Gareth James, Daniela Witten, Trevor Hastie, and Robert Tibshirani.
An Introduction to Statistical Learning: with Applications in R, volume 112 of Springer Texts in
Statistics.
Springer, New York, NY, 2nd edition, 2021.

24 / 24


	Recap:Validation set approach
	k-fold cross-validation
	Preparation for the Bootstrap: Sampling distribution
	The Bootstrap
	Wrap-up
	References

