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Today’s topics

• Recall: Resampling methods
• Cross-validation: estimate test performance using training data
• The bootstrap: quantify uncertainty by resampling from the given dataset

• Model Selection (Today & Wed): Identify relevant predictors among many
• Why?

• Improve prediction accuracy (avoid overfitting)
• Improve model interpretability

• How?
• Subset selection (today)
• Regularization (next lecture on Wed)
• Dimension reduction (not covered in STA 35C; possibly in STA 142A)
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Brief recap: Resampling methods

Given a single dataset & a single model, we often want to assess model performance

• Test performance (e.g., test MSE)
• We care about performance on new (test) data, but only have a training dataset
• Key idea: Hold out part of the data for validation
• Cross-validation: Repeat data splits multiple times & aggregate results for a

more reliable test performance estimate

• Uncertainty quantification (e.g., standard error)
• We want to gauge variability in parameter estimates
• If we could draw fresh samples from nature, we’d see how estimates vary
• The bootstrap: Since we cannot acquire new data, we resample from our

existing dataset (treating it as an empirical distribution)
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(Linear) Model selection

Recall multiple linear regression:

Y = β0 + β1X1 + · · · + βpXp + ϵ.

• In reality, we might have many predictors, unsure which are truly helpful

• Example: Credit dataset
• Response: balance
• Predictors: income, limit, rating, cards, age, education, own, student,

married, region

• Goal: Choose a subset of relevant predictors
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Why model selection?

Two main reasons:
• Prediction accuracy

• Overfitting can occur if we use too many predictors
• If p > n, we might not even get a unique least squares solution (variance → ∞)
• Reducing predictors can lower variance and improve generalization

• Model interpretability
• Many of the available predictors might not be truly associated with the response
• Including unnecessary predictors can mislead interpretation
• Simpler models are easier to interpret and explain
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How to do model selection?

Three key approaches for linear model selection:
• Subset selection

• Identify a relevant subset of predictors, then fit via least squares
• Regularization (to be discussed on Wed)

• Add a penalty term to least squares formulation that favors “simpler” models
• Dimension reduction (not covered in STA 35C)

• Project the p predictors into a smaller set of p′ ≪ p linear combinations

Today’s focus: Subset selection
• Best subset selection
• How to choose the optimal model
• Stepwise selection (greedy approximation)
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Best subset selection

Idea: Try all subsets of predictors, and pick the one that performs the best
• With p predictors, there are 2p possible subsets
• Compare models of different sizes carefully (recall R2 vs. R2

adj)

Procedure1:
• Let M0 be the null model (no predictors, just intercept)
• For k = 1, . . . , p:

• Fit all
(p

k
)

= p!
k!(p−k)! models with exactly k predictors

• Pick the best (lowest RSS or highest R2) among them, call it Mk
• Finally, select the best among M0, . . . , Mp using a test-performance proxy

• e.g., adjusted R2 or cross-validation (more on this later)

1See [JWHT21, Chapter 6.5.1] for example codes
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Best subset selection: Example (n = 3, p = 2)

Example
Dataset: 3 points with 2 predictors (X1, X2) and a response Y :

(X1, X2, Y ) = (1, 2, 3),
(X1, X2, Y ) = (2, 1, 4),
(X1, X2, Y ) = (3, 3, 5).

Candidate subsets:
• M0 : Null model (intercept only).

• M(X1)
1 : Use X1 only.

• M(X2)
1 : Use X2 only.

• M2 : Use (X1, X2).
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Best subset selection: Example (Step 1)

Example
Step 1: Fit each model and compute R2.
1) M0 : intercept only

• β̂0 = Ȳ = 3+4+5
3 = 4.

• RSS0 =
∑

(Yi − 4)2 = 1 + 0 + 1 = 2.

• TSS = 2, and thus, R2
0 = 1 − 2

2 = 0.

2) M(X1)
1 : one predictor X1

• (xi , yi ) = {(1, 3), (2, 4), (3, 5)}; x̄ = 2, ȳ = 4.

β̂1 =
∑3

i=1(xi − x̄)(yi − ȳ)∑3
i=1(xi − x̄)2

= (−1) · (−1) + 0 · 0 + 1 · 1
(−1)2 + (0)2 + (1)2 = 2

2 = 1, β̂0 = ȳ − β̂1x̄ = 4 − 1 · 2 = 2.

• Thus Ŷ = 2 + 1X1 =⇒ fitted values (3, 4, 5).
• RSS1 = 0 =⇒ R2

1 = 1.
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Best subset selection: Example (Step 1, cont’d)

Example
...(continued from the previous slide)...

3) M(X2)
1 : one predictor X2

• (x2, y) = {(2, 3), (1, 4), (3, 5)}, x̄2 = 2, ȳ = 4.

β̂1 = 0 + 0 + 1 · 1
0 + (−1)2 + 12 = 1

2 = 0.5, β̂0 = 4 − 0.5 · 2 = 3.

• Ŷ = 3 + 0.5X2 =⇒ Ŷ = {4, 3.5, 4.5}.

RSS2 = (3 − 4)2 + (4 − 3.5)2 + (5 − 4.5)2 = 1 + 0.25 + 0.25 = 1.5, R2
2 = 1 − 1.5

2 = 0.25.

4) M2 : two predictors (X1, X2)
• With 3 points, a model with 2 predictors can fit perfectly if consistent.
• We get RSS1,2 = 0, and thus, R2

1,2 = 1.
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Best subset selection: Example (Step 2)

Example
Step 2: Compare the four candidate models.

Choose the best by adjusted R2 or a simpler-subset preference.

Recall R2
adj = 1 − RSS/(n−k−1)

TSS/(n−1) :

R2
adj(M0) = 0,

R2
adj(M

(X1)
1 ) = 1,

R2
adj(M

(X2)
1 ) = −0.5,

M2 : undefined due to n − p − 1 = 0.

Therefore, we choose M(X1)
1 .
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Best subset selection: Visualization
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Figure: In the Credit dataset, RSS and R2 are displayed for each subset of the ten predictors. The red frontier
indicates the best model at each subset size. The x-axis goes from 1 to 11 because one categorical predictor (three
levels) is split into two dummy variables [JWHT21, Figure 6.1].

• Pick the model with the lowest test MSE or best adjusted R2

• If the improvement is marginal (e.g., within 1 SE of the best), pick a simpler subset
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Evaluating models & criteria

Goal: Out of {M0, . . . , Mp}, choose the model with the best test performance
• Training performance (e.g., RSS or R2) alone can be misleading

Common criteria:
• Adjusted R2:

• R2
adj = 1 − RSS/(n−p−1)

TSS/(n−1)
• Increases only if adding predictors significantly decreases RSS

• Cross-validation:
• An empirical approach splitting/re-splitting data to estimate test error

• Cp, AIC, BIC (beyond the scope of this course):
• Analytical formulas penalizing model size (p) under certain theoretical

assumptions
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Visualization of selection criteria

Figure: For the Credit dataset, adjusted R2, validation error (single split), and cross-validation error are
displayed for the best model containing k predictors, for k ranging from 1 to 11. The overall best model,
based on each of these quantities, is shown as a blue cross [JWHT21, Figures 6.2 & 6.3, excerpted].

• These methods often choose similar models
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Pop-up quiz #1: Best subset selection

Question: Which of the following statements about best subset selection is TRUE?

A) It considers only a single split of the training data.

B) It fits all possible models of each size k and picks the best for that k, and also best k.

C) It can handle extremely large p quickly by skipping some potential subsets.

D) Once a predictor is in the model, it cannot be removed at later steps.

Answer: (B) is correct. Best subset selection exhaustively checks every combination
(subsets) of predictors of size k. The other options refer to other approaches or
constraints.
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Best subset selection: Summary & limitations

Key idea: Exhaustively explore 2p subsets; pick the best by a test-performance criterion
• Useful when p is small
• {Mk} denotes the best k-predictor model; we choose among {M0, . . . , Mp} using

a test-performance measure
• Common performance metrics: adjusted R2, Cp, AIC, BIC, cross-validation
• Straightforward, systematic approach for accuracy & interpretability

Limitation: 2p grows rapidly (with p), often infeasible for large p
• e.g., p = 10 → 2p ≈ 103; p = 50 → 2p ≈ 1015 (infeasible)
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Forward stepwise selection

Idea: A greedy2 approximation to best subset selection, adding one predictor at a time

Procedure3:
• M0: null model with intercept only

• For k = 0, . . . , p − 1:
• Consider all (p − k) models that add exactly 1 unused predictors to Mk
• Pick the best updated model, and call it Mk+1

• Finally, compare {M0, . . . , Mp} using adjusted R2 or other test-based metrics

2At each step, pick the best addition via a local search
3See [JWHT21, Chapter 6.5.1] for example codes
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Forward stepwise selection: Example (Overview)

Example
Dataset: 4 points with 3 predictors (X1, X2, X3) and response Y :

(X1, X2, X3, Y ) = (1, 2, 2, 2.5),
(X1, X2, X3, Y ) = (2, 1, 1, 3.5),
(X1, X2, X3, Y ) = (3, 3, 2, 6),
(X1, X2, X3, Y ) = (4, 1, 3, 6.5).

• Step 0: M0 fits Y = β0; compute RSS0 ≈ 11.19.

• Step 1: Fit M(X1)
1 , M(X2)

1 , M(X3)
1 . Pick best single predictor (with largest R2).

• Step 2: Add a second predictor from the remaining, forming M2. Check R2, R2
adj.

• Step 3: Possibly add the last predictor (M3 with all three predictors).

• Final selection: Compare M0, . . . , M3 and choose the subset subset with best test performance.
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Forward stepwise selection: Example (Step 0)

Example
Step 0: Null model. M0 : Y = β0.

• β̂0 = Ȳ = 2.5+3.5+6+6.5
4 = 4.625.

• RSS0 =
∑

(Yi − 4.625)2 = (2.5 − 4.625)2 + (3.5 − 4.625)2 + (6 − 4.625)2 + (6.5 − 4.625)2

= (−2.125)2 + (−1.125)2 + (1.375)2 + (1.875)2

≈ 4.51 + 1.27 + 1.89 + 3.52
= 11.19.

• TSS = 11.19, R2
0 = 1 − 11.19

11.19 = 0.

Step 1: Fit and compare each single-predictor model X1, X2, X3.

• We now fit M(X1)
1 , M(X2)

1 , and M(X3)
1 .

• Then compute RSS and R2 for each; See the next slide for sample calculation for M(X1)
1 .

Conclusion of Step 1: Whichever single predictor yields the highest R2 (or lowest RSS) is M1.
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Forward stepwise selection: Example (Step 1, further details)

Example
Illustration for X1:

• X1 = {1, 2, 3, 4}, Y = {2.5, 3.5, 6, 6.5}.

• Slope β̂1, β̂0 are obtained by least squares:

β̂1 =
∑

(x1i − x̄1)(yi − ȳ)∑
(x1i − x̄1)2 and β̂0 = ȳ − β̂1x̄

where x̄1 = 2.5 and ȳ = 4.625. Eventually, we find

β̂1 ≈ 1.2, β̂0 ≈ 3.025 (approx).

• Then RSS1 ≈ 2.55, R2
1 = 1 − 2.55

11.19 ≈ 0.77.

Similarly for X2, X3: RSS2 ≈ 4.12, R2
2 ≈ 1 − 4.12

11.19 = 0.63, and RSS3 ≈ 3.20, R2
3 ≈ 1 − 3.20

11.19 = 0.71.

Pick the best single predictor = X1, whic yields highest R2 or lowest RSS.
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Forward stepwise selection: Example (Step 2)

Example
Step 2: Add a second predictor to M1

Now k = 1. Our model has X1, so the unused are X2 and X3:

M(X1,X2)
2 , M(X1,X3)

2 .

We fit each, compute RSS&R2. For instance:

(1) M(X1,X2)
2 : Y = β0 + β1X1 + β2X2. After fitting this model:

RSS1,2 ≈ 1.80, R2
1,2 = 1 − 1.80

11.19 ≈ 0.84.

(2) M(X1,X3)
2 : Similarly, we get RSS1,3 ≈ 1.40, R2

1,3 = 1 − 1.40
11.19 ≈ 0.875.

Hence M2 = M(X1,X3)
2 (larger R2).
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Forward stepwise selection: Example (Step 3 & Selection)

Example
Step 3: Add the remaining predictor to M2

Now k = 2. Our model includes X1 and X3. The remaining predictor is X2. So we consider:

M3 : Y = β0 + β1X1 + β2X2 + β3X3.

• Fit the full model with 3 predictors, compute RSS1,2,3, R2
1,2,3

• Suppose RSS1,2,3 ≈ 1.25, R2
1,2,3 = 1 − 1.25

11.19 ≈ 0.89.

Finally, we might pick M1 or do cross-validation among the four models:

M0 : R2 = 0, R2
adj = 0,

M1 = {X1} : R2 ≈ 0.77, R2
adj ≈ 0.66,

M2 = {X1, X3} : R2 ≈ 0.875, R2
adj ≈ 0.63,

M3 = {X1, X2, X3} : R2 ≈ 0.89, R2
adj undefined ( n − p − 1 = 0 ).
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Pop-up quiz #2: Stepwise selection

Question: In forward stepwise selection, how do we choose a new predictor at each step?

A) By removing whichever predictor contributes least to the model’s fit.

B) By guessing randomly among the remaining predictors.

C) By trying each unused predictor one at a time and selecting the one that yields the
best improvement in the chosen metric (e.g., R2).

D) By fitting all 2p possible models and picking the global best.

Answer: (C) is correct. Forward stepwise selection tries each remaining predictor
individually at each step, then adds the one that most improves the model.
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Example: Stepwise selection may yield a different subset

Figure: The first four chosen models for best subset selection and forward stepwise selection on the
Credit dataset. The first three models are identical, but the fourth differs [JWHT21, Table 6.1].

• Stepwise typically performs well and is computationally much cheaper:

1 +
p−1∑
k=0

(p − k) = 1 + p(p+1)
2 ≪ 2p

• However, it may pick a different subset if the greedy path diverges
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Backward stepwise selection

There is an alternative stepwise method reverses the order of search

Backward stepwise selection:
• Start with the full model; remove one predictor at a time
• Usually require n > p so the full model can be fit initially

Comparison with forward stepwise:
• Both are greedy algorithms using local decisions
• Both drastically reduce the search space vs. best subset when p is large
• They can yield different subsets if they take different paths
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Wrap-up & Takeaways

Model selection (Subset selection): Identify a subset of relevant predictors

• Purposes:
• Improve prediction accuracy and avoid overfitting
• Enhance model interpretability

• Methods:
• Best subset selection:

• Exhaustively checks all 2p subsets (optimal but expensive)
• Feasible only for small p (e.g., p ≲ 20)

• Stepwise selection (forward or backward):
• Much fewer model fits needed: 1 + p(p+1)

2 vs. 2p

• Often performs well in practice, but may miss the globally optimal subset
• Overall:

• Stepwise methods generally give good models but are not guaranteed to be optimal
• For moderate or large p (≳ 50), stepwise is typically the only feasible approach
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