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Agenda

• Last time: Model selection via subset selection
• Best subset selection: identify relevant predictors among many
• Stepwise selection: A computationally more tractable alternative (greedy alg)

• Today: Regularization
• Overview: what regularization is & why it can help
• Two main examples in linear regression

• Ridge regression
• The lasso (least absolute shrinkage and selection operator)
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Recap: Subset selection

Best subset selection:
• Exhaustively search all 2p subsets
• Pick the best model for each size k, then choose among them (via R2

adj or CV)
• Feasible only for smaller p (high computational cost)

Forward stepwise selection:
• Greedy approach: add one predictor at a time
• Complexity: O(p2) instead of 2p

• May miss the global optimum if local decisions are suboptimal

Backward stepwise selection:
• Greedy approach: remove one predictor at a time
• Similar pros/cons as forward stepwise
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Recap: Subset selection – Comparison of search paths

An illustrative example with p = 4:

Figure: Illustration of forward stepwise (black solid path; successively adding X1 → X4 → X3 → X2) and backward
stepwise (red dashed path; removing X2 → X3 → X4 → X1). Best subset selection checks all 2p possibilities; all
three can yield different outcomes.

For more R examples, see the discussion section slides on Canvas
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https://canvas.ucdavis.edu/courses/975009/files/folder/Discussion?


Recap: Subset selection – Summary

• Summary:
• Goal: identify a relevant subset of predictors
• Procedure: evaluate subsets (all or partial), then pick best via R2

adj, CV, etc.
• BSS is exhaustive but expensive; stepwise is faster
• Typically refit the final chosen “best” subset with least squares

• Advantages:
- Direct variable selection: some βj = 0 (excluded)
- Straightforward implementation and intuitive interpretation

• Disadvantages:
- Even stepwise can be costly if p is very large
- Instability: small changes in the data can alter the chosen “best” subset

⇒ Regularization can handle large p, offering stable estimates without discrete exclusion
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Regularization: What and why?

Recall least squares: find parameters β̂0, . . . β̂p that minimize

RSS =
n∑

i=1
(yi − ŷi)2 where ŷi = β̂0 + β̂1xi1 + · · · + β̂ipxp

• Challenges:
• If p is large or data are noisy, least squares solutions can be unstable
• Overfitting (huge variance in β̂) or no unique solution if p > n

• Idea: modify the objective by adding a penalty on βj ’s to stabilize fitting
• Balance data fidelity vs. “simplicity” (by favoring smaller βj)
• This approach is called regularization (or shrinkage)

We will learn two prominent regularization techniques for linear regression:
• Ridge regression (ℓ2 penalty)
• Lasso (ℓ1 penalty)
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Ridge regression: 1) Formulation

Ridge regression: Find β̂0, . . . β̂p that minimize

n∑
i=1

yi − β0 −
p∑

j=1
βjxij

2

︸ ︷︷ ︸
RSS

+ λ
p∑

j=1
β2

j︸ ︷︷ ︸
penalty

• λ ≥ 0 is a tuning parameter
• Each λ yields a different set of coefficient estimates β̂R

λ

Remarks:
• No penalty on β0 (the intercept)
• As λ → 0, ridge regression → standard least squares
• As λ grows, β1:p = (β1, . . . , βp) shrinks toward 0

- Reduces variance of β1:p but increases bias
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Ridge regression: 2) Effects of scaling

The least squares coefficients are scale equivariant:
• Multiplying Xj by constant c scales β̂j by 1/c
• Regardless of scaling, Xj β̂j remains the same, not affecting other coefficients

Ridge regression is not scale-equivariant:
• Rescaling one predictor can affect others through the penalty term
• Hence, Xj β̂

R
j,λ depends on both λ and predictor scaling

Therefore, it is recommended to standardize predictors before ridge via

x̃ij = xij
sij

where s2
ij = 1

n

n∑
i=1

(xij − x̄j)2 and x̄j = 1
n

n∑
i=1

xij
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Ridge regression: 3) Credit dataset example
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Figure: Standardized ridge coefficients for Credit, plotted vs. λ and ∥β̂R
λ ∥2/∥β̂∥2 [JWHT21, Figure 6.4]. (Note:

∥v∥2 =
√

v2
1 + · · · + v2

p .)

• As λ increases, all βj shrink toward 0 (none exactly zero though)
• If variables are correlated, ridge shrinks them together in a “group” manner
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Ridge regression: 4) Advantages over least squares

Ridge’s advantage rooted in Bias-variance tradeoff:
• λ = 0: no bias but high variance
• Larger λ: more bias but lower variance

When ridge can be most helpful:
• If least squares has high variance (e.g. p ≈ n or predictors are collinear)
• If data are noisy and βj can fluctuate a lot
• Ridge still works even if p > n, producing a unique solution

Computational advantages of ridge:
• No need for 2p model fits (as in best subset); for any λ, ridge requires only a single fit
• Indeed, we can compute solutions for all λ at near the same cost as one OLS fit
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Ridge regression: 5) Visualization of bias-variance tradeoff
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Figure: Bias-variance tradeoff in ridge for a simulated data set (p = 45, n = 50). Shown are squared bias
(black), variance (green), and test MSE (purple) vs. λ [JWHT21, Figure 6.5].

• At λ = 0, there is no bias but high variance
• Increasing λ significantly reduces variance at the cost of slightly higher bias
• Eventually, added bias overtakes the benefit of reduced variance
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Ridge regression: 6) Example with a toy dataset (R script)

• Problem setup:
• n = 5, p = 2
• Ridge vs. least squares (at λ = 1)

• Goal: See how ridge regression
shrinks coefficients β̂ compared to
standard least squares

# Toy data: 5 obs, 2 predictors, no intercept
df <- data.frame(

x1 = c(1,2,3,4,5),
x2 = c(2,1,3,1,2),
y = c(2,2.5,6,4,6.5)

)

# OLS fit (no intercept => ’-1’)
ols_fit <- lm(y ~ x1 + x2 - 1, data = df)
cat("OLS Coeffs:\n", coef(ols_fit), "\n")

install.packages("glmnet") # if not installed
library(glmnet)

# Prepare X,y for glmnet
X <- as.matrix(df[,c("x1","x2")])
y <- df$y

# Ridge fit with lambda=1, no intercept
penalization

ridge_fit <- glmnet(
X, y, alpha=0, lambda=1,
intercept=FALSE, standardize=TRUE

)
cat("Ridge Coeffs (lambda=1):\n", as.matrix(

coef(ridge_fit)), "\n")
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Ridge regression: 7) Selecting λ
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Figure: Left: CV errors for ridge regression on the Credit dataset with various values of λ. Right: Ridge regression
coefficient estimates. The vertical dashed lines indicate the λ selected by CV [JWHT21, Figure 6.12].

• Here, the chosen λ is relatively small, meaning minimal shrinkage relative to least square
• The error curve’s dip is not very pronounced, suggesting a broad range of λ values yield

similar performance
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Pop-up quiz #1: Ridge regression

Which statement below is false about ridge regression?
(Hint: Think carefully. Which one might not always hold?)

A) It often lowers variance compared to least squares, at the cost of higher bias.
B) All ridge coefficients are strictly smaller in magnitude than the least squares estimates for

each predictor.
C) The tuning parameter λ strongly influences ridge performance, often chosen via

cross-validation.
D) Ridge tends to shrink correlated predictors together.

Answer: (B) is false.
Brief explanation:

• While ridge regression shrinks the overall magnitude of the coefficient vector, it does not guarantee
every individual coefficient is always smaller than its least squares counterpart.

• In some cases, ridge can redistribute weights among correlated predictors, causing some estimates to
exceed their OLS magnitudes even though the sum of squares ∥β∥2

2 is reduced.
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Ridge regression: 8) Summary

• Ridge regression formulation:
• Add a penalty term

∑p
j=1 β2

j to the least squares objective, scaled by λ ≥ 0
• Shrinks βj more strongly as λ grows, stabilizing estimates

• Bias-variance tradeoff:
• Larger λ ⇒ higher bias but lower variance
• Especially helpful when OLS has high variance (e.g. large p, or p > n)

• Computation:
• Efficient to solve for all λ at roughly the cost of one OLS fit

• Limitation:
• Coefficients seldom reach exactly zero =⇒ no direct variable selection
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The lasso: 1) Formulation

The lasso: Find β̂0, . . . , β̂p that minimize

n∑
i=1

yi − β0 −
p∑

j=1
βjxij

2

︸ ︷︷ ︸
RSS

+ λ
p∑

j=1

∣∣βj
∣∣

︸ ︷︷ ︸
penalty

• λ ≥ 0 is a tuning parameter
• Each choice of λ gives a different set of Lasso estimates β̂L

λ

Remarks:
• No penalty on β0 (the intercept)
• As λ → 0, lasso → standard least squares
• As λ grows, many βj shrink toward zero, and some exactly become 0

Unlike ridge, the lasso can yield exact zero estimates =⇒ variable selection!
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The lasso: 2) Credit dataset example
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Figure: Standardized lasso coefficients for Credit, plotted vs. λ and ∥β̂R
λ ∥2/∥β̂∥2 [JWHT21, Figure 6.6].

• Lasso can force some coefficients to zero as λ increases
• Achieves variable selection directly (predictors with β̂L

j = 0 are excluded)
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The lasso: 3) Example with a toy dataset (R script)

• Setup:
• n = 5, p = 2
• Compare lasso vs. OLS at λ = 1

• Objective: See how lasso can shrink
coefficients to zero

# Toy data: 5 obs, 2 predictors, no intercept
df <- data.frame(

x1 = c(1,2,3,4,5),
x2 = c(2,1,3,1,2),
y = c(2,2.5,6,4,6.5)

)

# OLS fit (no intercept => ’-1’)
ols_fit <- lm(y ~ x1 + x2 - 1, data=df)
cat("OLS Coeffs:\n", coef(ols_fit), "\n")

# If needed: install.packages("glmnet")
library(glmnet)

# Prepare X, y
X <- as.matrix(df[, c("x1","x2")])
y <- df$y

# Lasso with alpha=1, lambda=0.1
lasso_fit <- glmnet(X, y,

alpha=1,
lambda=1,
intercept=FALSE,
standardize=TRUE)

cat("Lasso Coeffs (lambda=0.1):\n",
as.matrix(coef(lasso_fit)),"\n")
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The lasso: 4) Selecting λ

0.0 0.2 0.4 0.6 0.8 1.0

0
2

0
0

6
0

0
1

0
0

0
1

4
0

0

C
ro

s
s
−

V
a
li
d
a
ti
o
n
 E

rr
o
r

0.0 0.2 0.4 0.6 0.8 1.0

−
5

0
5

1
0

1
5

S
ta

n
d
a
rd

iz
e
d
 C

o
e
ff
ic

ie
n
ts

‖β̂L
λ ‖1/‖β̂‖1‖β̂L

λ ‖1/‖β̂‖1
Figure: Left: Ten-fold cross-validation MSE for the lasso, applied to the sparse simulated data. Right: The
corresponding lasso coefficient estimates, with the two signal variables in color and the noise variables in gray. The
vertical dashed line indicates the fit that minimizes the cross-validation error [JWHT21, Figure 6.13].

• The lasso cleanly separates two signal variables from noise variables
• In contrast, standard least squares (far right, with ∥β̂L

λ∥1/∥β̂∥1 = 1) only identifies the purple
variable without discarding the noise predictors
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The lasso: 5) Summary

• Lasso formulation:
• Penalty term

∑p
j=1 |βj | scaled by λ

• As λ grows, some βj become exactly zero =⇒ variable selection

• Lasso advantages:
• Encourages a sparse model for easier interpretability
• Slightly more complex than ridge, but fairly efficient to solve

• Ridge vs. lasso:
• Lasso can set some coefficients to exact zeros, while ridge never does
• Ridge tends to be more stable especially when predictors are highly correlated
• Both typically tune λ via cross-validation
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Wrap-up & Takeaways

Subset selection:
• Great for small p, but can be expensive or unstable for large p
• Final model is refit by least squares on the chosen subset

Regularization:
• Ridge: ℓ2 penalty shrinks all coefficients toward zero, good if many have modest

nonzero effects
• The lasso: ℓ1 penalty can set some coefficients exactly to zero (variable selection)
• Tuning λ typically via cross-validation for both

Next lecture:
• Geometric intuition for ridge vs. lasso
• Transition to multiple hypothesis testing
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