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Announcement

Midterm 2 on Fri, May 16 (12:10 pm–1:00 pm in class)
• Arrive early: The exam starts at 12:10 pm and ends at 1:00 pm sharp
• One hand-written cheat sheet: Letter-size (8.5"×11"), double-sided, brief formulas/notes
• Calculator: A simple (non-graphing) scientific calculator is allowed
• No other materials beyond the single cheat sheet (no textbooks, etc.)
• SDC accommodations: Confirm scheduling with AES online ASAP

Preparation tips:
• Primary coverage: Lectures 12–19 (including next Wed)
• Key concepts from earlier topics may be assumed (cf. Midterm 1 Problems 2-4; HW 3

Problems 1-3)
• A practice midterm and brief solution key will be posted on course webpage
• Office hours next week:

• Instructor: Wed, 4–6pm (extended); no OH on Thu
• TA: Mon/Thu 1–2pm
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Today’s topics

• Regularization: More details
• Recap: Ridge vs. lasso
• Closer look into the shrinkage effects
• Geometric intuition
• Comparison of ridge vs. lasso

• Multiple hypothesis testing: Motivation
• Why single-hypothesis testing may fail in large-scale settings
• Type-I error inflation and how to control it
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Recap: Why regularization?

Challenges: Least squares estimates...
• Can be unstable or undefined when p ≈ n or p > n, or if data are noisy
• May fail to capture a “sparse” underlying relationship

Regularization can stabilize estimation by adding a penalty term: with λ ≥ 0,

β̂λ ∈ arg min
(β0,β1,...,βp)

{ n∑
i=1

(
yi − β0 −

p∑
j=1

βjxij
)2

︸ ︷︷ ︸
RSS

+ λ R(β1, . . . , βp)︸ ︷︷ ︸
penalty

}

• The penalty shrinks coefficients to reduce variance at the cost of some bias

Two popular choices:
• Ridge: R(β1, . . . , βp) =

∑p
j=1 β2

j
• Lasso: R(β1, . . . , βp) =

∑p
j=1 |βj |
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Ridge: Regularization reduces variance with shrinkage

Figure: Scatter plots of 100 least squares estimates (black) vs. ridge estimates for λ = 1
in red and λ = 10 in dark red. As λ grows, the estimates cluster more tightly (lower
variance) but shift away from the true value (blue star), indicating increased bias.
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Ridge: Contours of training objective functions

Figure: Contour plots of the least squares objective function (=RSS) in black, ridge regression
objective for λ = 0.1 in orange, λ = 1 in red, λ = 10 in dark red. As λ increases, the ridge
minimizer moves closer to β = 0. This depicts a single instance of data.
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Ridge: Illustration with 1D example

In the simplified setting with n = p = 1 without intercept, ridge solves for λ ≥ 0:

β̂R
λ ∈ arg min

{
(y − xβ)2 + λβ2

}

Figure: As λ grows, β̂R
λ shrinks toward 0 for

fixed (y , x) (y = 2, x = 1).
Figure: For each y , β̂R

λ is smaller than the LS
estimate y/x in magnitude, when λ > 0.
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Lasso: Regularization reduces variance, but...

Figure: Scatter plots of 100 least squares estimates (black) vs. lasso estimates for λ = 1 in red and
λ = 10 in dark red. Lasso can aggressively shrink or zero-out coefficients, but the variance reduction is
less uniform than ridge. The shift from the true (blue star) may or may not be worth it.
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Lasso: Regularization enables variable selection

Figure: Scatter plots of 100 least squares estimates (black) vs. lasso estimates for λ = 0.1 in orange and
λ = 0.5 in red. If the true β2 = 0 (blue star), lasso can correctly select the significant variable (X1), while
suppressing noise and driving estimates to zero for X2, thereby capturing the “sparse” true associations.
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Lasso: Illustration with 1D example

In the setting with n = p = 1 without intercept, ridge solves for λ ≥ 0:

β̂R
λ ∈ arg min

{
(y − xβ)2 + λ|β|

}

Figure: As λ grows, β̂ℓ
λ shrinks more aggressively;

small |y | can yield β = 0 (y = 2, x = 1 fixed).
Figure: At λ = 1, x = 1, β hits 0 iff |y | ≤ 1. This
“thresholding” property underlies variable selection.
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(Optional1) Alternative formulation: Constrained form

Ridge and lasso can be expressed as equivalent constrained optimization problems:

(Ridge) minimizeβ


n∑

i=1

yi − β0 −
p∑

j=1
xijβj

2
 subject to

p∑
j=1

β2
j ≤ sλ

(Lasso) minimizeβ


n∑

i=1

yi − β0 −
p∑

j=1
xijβj

2
 subject to

p∑
j=1

|βj | ≤ s ′
λ

• For each λ ≥ 0, there exist sλ, s ′
λ such that solving the above problems yield the

same ridge/lasso regression coefficient estimates
• Geometrically: feasible region is an ℓ2-ball for ridge or ℓ1-ball for lasso

1That is, it is good to know, but its mathematical details will not be asked in the exams
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The lasso prefers “spiky” solutions

Figure: Contours of the RSS (red ellipses) and the feasible sets (cyan areas). Left: For lasso, the
constraint ∥β∥1 ≤ s (a diamond shape) can yield corner solutions having exact zeros. Left: For ridge, the
constraint ∥β∥2

2 ≤ s ′ is round, so typically yielding no exact zeros [JWHT21, Figure 6.7].
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Comparison of ridge vs. lasso

Figure: Standardized ridge (left) and lasso (right) coefficients on Credit dataset, plotted vs. λ
[JWHT21, excerpted from Figures 6.4 & 6.6].

Ridge:
• More stable under collinearity
• Typically no exact zeros
• Often simpler closed-form solution

Lasso:
• Possibly less stable under correlated predictors
• Produces zero coefficients (variable selection)
• More interpretable if many Xj are irrelevant
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Regularization: Summary

• Why regularization?
• Remedy high variance or ill-posedness, especially when p ≈ n or p > n
• Potentially yield simpler, more interpretable models (esp. lasso)

• How? Add a penalty
• Ridge:

∑p
j=1 β2

j shrinks all βj stably, rarely yielding exact zeros
• Lasso:

∑p
j=1 |βj | can drive some βj to 0, enabling variable selection

• Tuning parameter λ typically selected via cross-validation

• Ridge vs. Lasso:
• Ridge is stable under collinearity and has simpler closed-form solutions
• Lasso can yield sparse solutions (some βj = 0)
• Neither strictly dominates: test performance depends on the data

→ usually do cross-validation to choose
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Pop-up quiz #1: Regularization

Which statement is false regarding ridge and lasso?

A) Ridge solutions typically shrink correlated predictors together in a “group” manner.

B) Lasso can produce exactly zero coefficients, offering built-in variable selection.

C) Once λ is chosen by cross-validation, ridge will always outperform lasso in test MSE.

D) Both ridge and lasso can handle p > n by imposing shrinkage or sparsity, respectively.

Answer: (C) is false.
In reality, neither ridge nor lasso always wins after tuning λ; their test performance is
problem-dependent, so we typically compare both (often via cross-validation).
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Multiple hypothesis testing: Motivation

Recall single-hypothesis testing:
• For each predictor Xj , test H0 : βj = 0
• Reject H0 if p < α (e.g., α = 0.05); Type I error rate = α for one test

• Type I (False positive): Null is true, but we reject
• Type II (False negative): Null is false, but we fail to reject

Modern data analysis often tests many variables (or features) simultaneously
• We want to identify which predictors are “significant” among many candidates

Examples:
• Testing thousands of genes/biomarkers for disease association
• Testing many (possibly high-dimensional p > n) predictors for stock price forecasting

Problem: Merely applying ordinary tests to each predictor can yield many false positives
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Multiple hypothesis testing: Illustration

“Stock broker” example:
• 1,024 brokers each predict market ups/downs for 10 days
• By sheer luck, one broker might guess all 10 correctly
• Interpreting that single perfect record as “skill” ignores the 1,023 others tested

Coin-flip analogy:
• Testing fairness of a coin: H0 : p = 0.5
• If we flip 1,024 fair coins ten times each, on average one coin is all heads2

• Standard test on that single coin gives p-value below 0.002

Key points:
• With many tests, extreme results can happen just by chance
• We must account for that when claiming “significance”
2Probability of “10 heads in a row” is ( 1

2 )10 = 1
1024
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Multiple hypothesis testing: Challenges

Setting:
• Suppose we have m predictors to test simultaneously
• Each test has a per-hypothesis Type I error rate α > 0

Problem:
• With m tests, we have m chances for false positives
• Probability of ≥ 1 false rejection ≈ 1 − (1 − α)m, which can be large as m grows

- e.g. at m = 20 and α = 0.05, we expect ≈ 1 false positive on average

How to address?
• Requiring p < 0.05 for each does not guarantee a ≤ 5% chance of any false positive
• We need multiple-comparison corrections (next Lecture)

• Family-Wise Error Rate (FWER) ensures probability of any false positive is ≤ α
• False Discovery Rate (FDR) limits the proportion of false positives among all rejections
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Pop-up quiz #2: Motivation for Multiple Testing

Which statement is false about multiple hypothesis testing?

A) When testing many predictors simultaneously, standard single-hypothesis p < 0.05
rules can lead to more than 5% chance of any false positive.

B) The probability of at least one false positive tends to decrease as we increase the
number of tests.

C) We need some corrections to account for testing multiple hypothesese simultaneously,
such as controlling the family-wise error rate or the false discovery rate.

D) Among 1,024 fair-coin flips, we expect about one coin to show 10 heads in a row
purely by chance, and thus, observing 10 heads in a row may not be too surprising.

Answer: (B) is false. In fact, the chance of at least one false positive increases with
more tests.
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Wrap-up & next steps

• Regularization:
• Ridge (ℓ2 penalty) is stable under correlated predictors
• Lasso (ℓ1 penalty) can set some coefficients exactly to zero (variable selection)
• Typically pick λ via cross-validation

• Multiple hypothesis testing:
• Single-hypothesis framework can fail when m is large

• Probability of at least one Type I error can be quite large
• We need corrections for controlling false positives

• Next time:
• Family-wise error rate: Bonferroni correction
• False discovery rate control: Benjamini–Hochberg
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