STA 35C: Statistical Data Science III

Lecture 17: Regularization Methods (cont'd) & Multiple Testing

Dogyoon Song

Spring 2025, UC Davis

Announcement

Midterm 2 on Fri, May 16 (12:10 pm-1:00 pm in class)

- Arrive early: The exam starts at 12:10 pm and ends at 1:00 pm sharp
- One hand-written cheat sheet: Letter-size (8.5"×11"), double-sided, brief formulas/notes
- Calculator: A simple (non-graphing) scientific calculator is allowed
- No other materials beyond the single cheat sheet (no textbooks, etc.)
- SDC accommodations: Confirm scheduling with AES online ASAP

Preparation tips:

- Primary coverage: Lectures 12–19 (including next Wed)
- Key concepts from earlier topics may be assumed (cf. Midterm 1 Problems 2-4; HW 3 Problems 1-3)
- A practice midterm and brief solution key will be posted on course webpage
- Office hours next week:
 - Instructor: Wed, 4–6pm (extended); no OH on Thu
 - TA: Mon/Thu 1-2pm

Today's topics

- Regularization: More details
 - Recap: Ridge vs. lasso
 - Closer look into the shrinkage effects
 - Geometric intuition
 - Comparison of ridge vs. lasso
- Multiple hypothesis testing: Motivation
 - Why single-hypothesis testing may fail in large-scale settings
 - Type-I error inflation and how to control it

Recap: Why regularization?

Challenges: Least squares estimates...

- Can be unstable or undefined when $p \approx n$ or p > n, or if data are noisy
- May fail to capture a "sparse" underlying relationship

Regularization can stabilize estimation by adding a penalty term: with $\lambda \geq 0$,

$$\hat{\beta}_{\lambda} \in \arg\min_{\left(\beta_{0},\beta_{1},\ldots,\beta_{p}\right)} \left\{ \underbrace{\sum_{i=1}^{n} \left(y_{i} - \beta_{0} - \sum_{j=1}^{p} \beta_{j} x_{ij}\right)^{2}}_{\text{RSS}} + \lambda \underbrace{R(\beta_{1},\ldots,\beta_{p})}_{\text{penalty}} \right\}$$

The penalty shrinks coefficients to reduce variance at the cost of some bias

Two popular choices:

- Ridge: $R(\beta_1, ..., \beta_p) = \sum_{j=1}^p \beta_j^2$
- Lasso: $R(\beta_1, ..., \beta_p) = \sum_{j=1}^p |\beta_j|$

Ridge: Regularization reduces variance with shrinkage

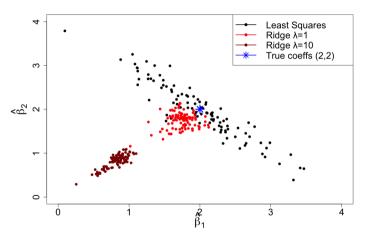


Figure: Scatter plots of 100 least squares estimates (black) vs. ridge estimates for $\lambda=1$ in red and $\lambda=10$ in dark red. As λ grows, the estimates cluster more tightly (lower variance) but shift away from the true value (blue star), indicating increased bias.

Ridge: Contours of training objective functions

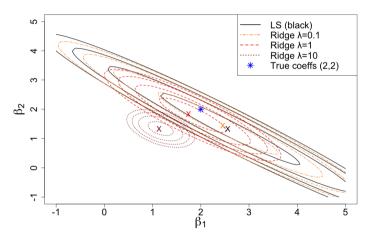


Figure: Contour plots of the least squares objective function (=RSS) in **black**, ridge regression objective for $\lambda=0.1$ in orange, $\lambda=1$ in red, $\lambda=10$ in dark red. As λ increases, the ridge minimizer moves closer to $\beta=0$. This depicts a single instance of data.

Ridge: Illustration with 1D example

In the simplified setting with n = p = 1 without intercept, ridge solves for $\lambda \ge 0$:

$$\hat{eta}_{\lambda}^R \in \operatorname{arg\,min}\left\{(y-xeta)^2 + \lambdaeta^2\right\}$$

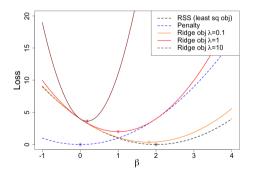


Figure: As λ grows, $\hat{\beta}_{\lambda}^{R}$ shrinks toward 0 for fixed (y,x) (y=2,x=1).

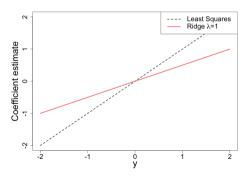


Figure: For each y, $\hat{\beta}_{\lambda}^{R}$ is smaller than the LS estimate y/x in magnitude, when $\lambda > 0$.

Lasso: Regularization reduces variance, but...

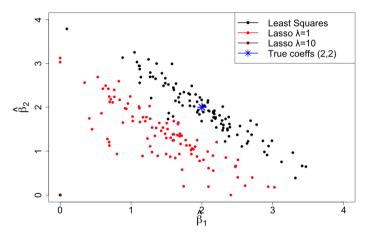


Figure: Scatter plots of 100 least squares estimates (black) vs. lasso estimates for $\lambda=1$ in red and $\lambda=10$ in dark red. Lasso can aggressively shrink or zero-out coefficients, but the variance reduction is less uniform than ridge. The shift from the true (blue star) may or may not be worth it.

Lasso: Regularization enables variable selection

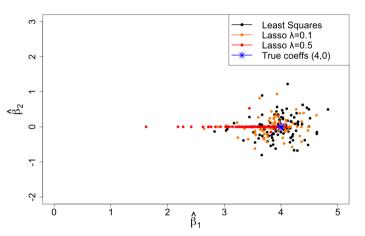


Figure: Scatter plots of 100 least squares estimates (**black**) vs. lasso estimates for $\lambda=0.1$ in **orange** and $\lambda=0.5$ in **red**. If the true $\beta_2=0$ (blue star), lasso can correctly select the significant variable (X_1), while suppressing noise and driving estimates to zero for X_2 , thereby capturing the "sparse" true associations.

Lasso: Illustration with 1D example

In the setting with n = p = 1 without intercept, ridge solves for $\lambda \ge 0$:

$$\hat{eta}_{\lambda}^R \in \mathop{\mathrm{arg\,min}}\left\{(y-xeta)^2 + \lambda |eta|\right\}$$

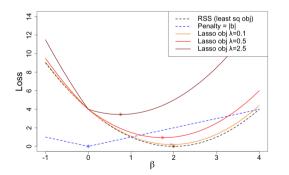


Figure: As λ grows, $\hat{\beta}_{\lambda}^{\ell}$ shrinks more aggressively; small |y| can yield $\beta = 0$ (y = 2, x = 1 fixed).

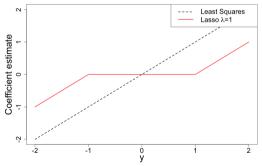


Figure: At $\lambda=1$, x=1, β hits 0 iff $|y|\leq 1$. This "thresholding" property underlies variable selection.

(Optional¹) Alternative formulation: Constrained form

Ridge and lasso can be expressed as equivalent constrained optimization problems:

- For each $\lambda \geq 0$, there exist $s_{\lambda}, s'_{\lambda}$ such that solving the above problems yield the same ridge/lasso regression coefficient estimates
- Geometrically: feasible region is an ℓ_2 -ball for ridge or ℓ_1 -ball for lasso

¹That is, it is good to know, but its mathematical details will not be asked in the exams

The lasso prefers "spiky" solutions

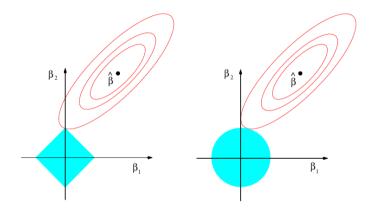
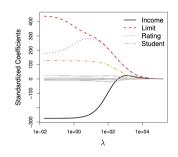


Figure: Contours of the RSS (red ellipses) and the feasible sets (cyan areas). Left: For lasso, the constraint $\|\beta\|_1 \le s$ (a diamond shape) can yield corner solutions having exact zeros. Left: For ridge, the constraint $\|\beta\|_2^2 \le s'$ is round, so typically yielding no exact zeros [JWHT21, Figure 6.7].

Comparison of ridge vs. lasso



Standardized Coefficients
Standardized Coefficients

Standardized Coefficients

O 100 200 5000

A

Figure: Standardized ridge (left) and lasso (right) coefficients on Credit dataset, plotted vs. λ [JWHT21, excerpted from Figures 6.4 & 6.6].

Ridge:

- More stable under collinearity
- Typically no exact zeros
- Often simpler closed-form solution

Lasso:

- Possibly less stable under correlated predictors
- Produces zero coefficients (variable selection)
- More interpretable if many X_j are irrelevant

Regularization: Summary

Why regularization?

- Remedy high variance or ill-posedness, especially when $p \approx n$ or p > n
- Potentially yield simpler, more interpretable models (esp. lasso)

• How? Add a penalty

- Ridge: $\sum_{j=1}^{p} \beta_{j}^{2}$ shrinks all β_{j} stably, rarely yielding exact zeros
- Lasso: $\sum_{j=1}^{p} |\beta_j|$ can drive some β_j to 0, enabling variable selection
- ullet Tuning parameter λ typically selected via cross-validation

Ridge vs. Lasso:

- Ridge is stable under collinearity and has simpler closed-form solutions
- Lasso can yield sparse solutions (some $\beta_j = 0$)
- Neither strictly dominates: test performance depends on the data
 - ightarrow usually do cross-validation to choose

Pop-up quiz #1: Regularization

Which statement is **false** regarding ridge and lasso?

- A) Ridge solutions typically shrink correlated predictors together in a "group" manner.
- B) Lasso can produce exactly zero coefficients, offering built-in variable selection.
- C) Once λ is chosen by cross-validation, *ridge will always* outperform lasso in test MSE.
- D) Both ridge and lasso can handle p > n by imposing shrinkage or sparsity, respectively.

Answer: (C) is false.

In reality, neither ridge nor lasso always wins after tuning λ ; their test performance is problem-dependent, so we typically compare both (often via cross-validation).

Multiple hypothesis testing: Motivation

Recall single-hypothesis testing:

- For each predictor X_j , test H_0 : $\beta_j = 0$
- Reject H_0 if $p < \alpha$ (e.g., $\alpha = 0.05$); Type I error rate $= \alpha$ for *one* test
 - Type I (False positive): Null is true, but we reject
 - Type II (False negative): Null is false, but we fail to reject

Modern data analysis often tests many variables (or features) simultaneously

• We want to identify which predictors are "significant" among many candidates

Examples:

- Testing thousands of genes/biomarkers for disease association
- Testing many (possibly high-dimensional p > n) predictors for stock price forecasting

Problem: Merely applying ordinary tests to each predictor can yield many false positives

Multiple hypothesis testing: Illustration

"Stock broker" example:

- 1,024 brokers each predict market ups/downs for 10 days
- By sheer luck, one broker might guess all 10 correctly
- Interpreting that single perfect record as "skill" ignores the 1,023 others tested

Coin-flip analogy:

- Testing *fairness* of a coin: $H_0: p = 0.5$
- If we flip 1,024 fair coins ten times each, on average one coin is all heads²
- Standard test on that single coin gives p-value below 0.002

Key points:

- With many tests, extreme results can happen just by chance
- We must account for that when claiming "significance"

 $^{^2} Probability$ of "10 heads in a row" is $(\frac{1}{2})^{10} = \frac{1}{1024}$

Multiple hypothesis testing: Challenges

Setting:

- Suppose we have *m* predictors to test simultaneously
- ullet Each test has a per-hypothesis Type I error rate lpha>0

Problem:

- With *m* tests, we have *m* chances for false positives
- Probability of ≥ 1 false rejection $\approx 1 (1 \alpha)^m$, which can be large as m grows
 - e.g. at $\emph{m}=$ 20 and $\alpha=$ 0.05, we expect ≈ 1 false positive on average

How to address?

- Requiring p < 0.05 for each does not guarantee a $\leq 5\%$ chance of any false positive
- We need multiple-comparison corrections (next Lecture)
 - Family-Wise Error Rate (FWER) ensures probability of any false positive is $\leq \alpha$
 - False Discovery Rate (FDR) limits the proportion of false positives among all rejections

Pop-up quiz #2: Motivation for Multiple Testing

Which statement is **false** about multiple hypothesis testing?

- A) When testing many predictors simultaneously, standard single-hypothesis p < 0.05 rules can lead to more than 5% chance of any false positive.
- B) The probability of at least one false positive tends to *decrease* as we increase the number of tests.
- C) We need some corrections to account for testing multiple hypothesese simultaneously, such as controlling the family-wise error rate or the false discovery rate.
- D) Among 1,024 fair-coin flips, we expect about one coin to show 10 heads in a row purely by chance, and thus, observing 10 heads in a row may not be too surprising.

Answer: (B) is false. In fact, the chance of at least one false positive *increases* with more tests.

Wrap-up & next steps

Regularization:

- Ridge (ℓ_2 penalty) is stable under correlated predictors
- Lasso (ℓ_1 penalty) can set some coefficients exactly to zero (variable selection)
- Typically pick λ via cross-validation

Multiple hypothesis testing:

- Single-hypothesis framework can fail when m is large
 - Probability of at least one Type I error can be quite large
- We need corrections for controlling false positives

Next time:

- Family-wise error rate: Bonferroni correction
- False discovery rate control: Benjamini–Hochberg

References

Gareth James, Daniela Witten, Trevor Hastie, and Robert Tibshirani.

An Introduction to Statistical Learning: with Applications in R, volume 112 of Springer Texts in Statistics.

Springer, New York, NY, 2nd edition, 2021.