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Announcement

Midterm 2 on Fri, May 16 (12:10 pm–1:00 pm in class)
• Arrive early: The exam starts at 12:10 pm and ends at 1:00 pm sharp
• One hand-written cheat sheet: Letter-size (8.5"×11"), double-sided, brief formulas/notes
• Calculator: A simple (non-graphing) scientific calculator is allowed
• No other materials beyond the single cheat sheet (no textbooks, etc.)
• SDC accommodations: Confirm scheduling with AES online ASAP

Preparation tips:
• Primary coverage: Lectures 12–19 (including Wed)
• A practice midterm and answer key are available on the course webpage
• Office hours this week:

• Instructor: Wed, 4–6pm (extended); no OH Thu
• TA: Mon/Thu 1–2pm
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https://dogyoons.github.io/teaching/sta35c/exams/practice/STA035C_Mock_midterm2.pdf
https://dogyoons.github.io/teaching/sta35c/exams/practice/STA035C_Mock_midterm2_sol.pdf


Today’s topics

• Multiple hypotheses testing
• Recap: Motivation & challenges

• Issues arising with multiple tests
• Real-world concerns: p-hacking & data dredging

• Family-wise error rate (FWER)
• Definition & intuition
• Controlling FWER: Bonferroni correction & Holm’s step-down

• False discovery rate (FDR)
• Definition & intuition
• Controlling FDR: Benjamini-Hochberg procedure
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Recap: Multiple testing

Single-hypothesis test:
• Typically set up H0, and gather data to reject it if there is significant evidence
• Type I error = false positive; Type II error = false negative
• Each test has Type I error at most α (e.g. 0.05)

Modern data analysis: multiple tests simultaneously
• E.g. Testing thousands of predictors or biomarkers to discovery significant ones
• If m is large, false rejections can occur easily by chance
• On average, α × m false positives if each test is at level α

Key challenge: Address the inflation of false positives as m grows
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Related issues: p-hacking and data dredging

Real danger: Searching for “significant” results in many ways until something "works"
• Repeatedly testing different hypotheses/subgroups
• Eventually, some test may yield p < 0.05 by chance

Outcome: Spurious “discoveries”
• Published claims may fail to replicate
• True findings can be overshadowed by noise

Conclusion: Systematic multiple-testing corrections are crucial, especially for large m
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Articles warning about misused statistical significance

Figure: Many reproducibility crises trace back to undisclosed multiple testing or selective reporting. Proper
adjustments can help mitigate these issues.
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Recall single hypothesis test

Single test:
• H0: "no signal" vs. Ha: "signal"
• Reject H0: "Discovery" of "signal"

H0 is true H0 is not true

Reject H0 Type-I error (FP) Correct (TP)
Not reject H0 Correct (TN) Type-II error (FN)

=⇒ Pr(Type I error) = Pr(reject a true null)
• By setting threshold α, we want to control Pr(Type I error) below α
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Family-wise error rate (FWER): Definition

Single test: Pr(Type I error) = Pr(reject a true null)

Multiple tests (m hypotheses):

FWER = Pr(reject at least one true H0)
= Pr(# Type-I error ≥ 1),

i.e. the probability of any false positive among m tests

If tests are independent, and each are at level α:

FWER = 1 − (1 − α)m,

• When m = 1, FWER = 1 − (1 − α)m = 1 − (1 − α) = α

• Grows quickly with m
• E.g. m = 20, α = 0.05 =⇒ FWER ≈ 0.64 ≫ 0.05
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Visualization: FWER grows as m increases
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Figure: FWER vs. number of tests m (log scale) for α = 0.05 (orange), 0.01 (blue), 0.001 (purple).
The dashed line is 0.05. For m = 50 and target FWER=0.05, each test must be at α = 0.001
[JWHT21, Figure 13.2]. 9 / 24



The Bonferroni correction

Key idea: Observe that

FWER = Pr

 m∑
j=1

{
Reject Hj

} ≤
m∑

j=1
Pr

({
Reject Hj

})
• Each test is done at level α/m =⇒ Pr

({
Reject Hj

})
≤ α/m =⇒ FWER ≤ α

The Bonferroni method (Bonferroni correction):
• For each hypothesis H1, . . . , Hm, reject Hj if only if pj < α

m

Pros & Cons:
• Pros: Simple & widely used
• Cons: Often very conservative =⇒ few rejections (=discoveries) & lower power1

1Power = TPR = the fraction of false null hypotheses that are successfully rejected
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Example: Bonferroni correction

Example
Let m = 6 hypotheses with p-values:

p1 = 0.0018, p2 = 0.009, p3 = 0.021, p4 = 0.034, p5 = 0.045, p6 = 0.070.

At α = 0.05, threshold = α
m = 0.05

6 ≈ 0.00833.

Reject Hj if pj < 0.00833.

Hence:
p1 = 0.0018 < 0.00833 =⇒ reject H1,

but p2 = 0.009 > 0.00833 and the rest are larger. So Bonferroni rejects only H1.

Conclusion: 1 rejection using Bonferroni, whereas naive p < 0.05 would reject 5 of them
(p1, . . . , p5).
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Holm’s step-down procedure

Holm’s method refines Bonferroni to be less conservative:

Holm’s method
1 Specify α, the level at which to control the FWER
2 Compute the p-values for the m null hypotheses, H01, . . . , H0m

3 Sort p-values so that p(1) ≤ p(2) ≤ · · · ≤ p(m)

4 Define
L = min

{
j : p(j) >

α

m + 1 − j

}
5 Reject all null hypotheses H0j for which pj < p(L)

Properties:
• Ensures FWER ≤ α

• Rejects at least as many hypotheses as Bonferroni
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Example: Holm’s step-down procedure

Example
Step 1: Set α = 0.05

Step 2: p1 = 0.0018, p2 = 0.009, p3 = 0.021, p4 = 0.034, p5 = 0.045, p6 = 0.070.

Step 3: Sort p-values p(1) = 0.0018, p(2) = 0.009, p(3) = 0.021, p(4) = 0.034, p(5) = 0.045, p(6) = 0.070.

Step 4: Find L = 3 because

p(1) = 0.0018 ? 0.0018 ≤ 0.05
6 + 1 − 1 = 0.05

6 ≈ 0.00833 =⇒ reject H(1), continue

p(2) = 0.009 ? 0.009 ≤ 0.05
6 + 1 − 2 = 0.05

5 = 0.01 =⇒ reject H(2), continue

p(3) = 0.021 ? 0.021 ≤ 0.05
6 + 1 − 3 = 0.05

4 = 0.0125? No =⇒ stop; L = 3

Step 5: We reject H(1), H(2) total 2 rejections. The rest are not rejected.

Conclusion: Holm’s method rejects 2, whereas Bonferroni rejected only 1.
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Visualization: Bonferroni vs. Holm
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Figure: Each panel shows sorted p-values from a separate simulation of m = 10 null hypotheses, with the two true
nulls in black and the others in red. Controlling the FWER at 0.05, Bonferroni rejects all points below the black
line, while Holm rejects all below the blue line. The gap between these lines indicates the additional hypotheses
Holm rejects but Bonferroni does not. In the middle panel, Holm rejects one more null than Bonferroni; in the right
panel, it rejects five more [JWHT21, Figure 13.3].
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Pop-up quiz #1: Controlling the FWER

You have m hypothesis tests, each to be tested at level α. You want to ensure the probability of
any false positive is at most α. Which statement best describes why the Holm step-down
procedure is generally less conservative than a simple Bonferroni correction?

(A) Because it applies the same threshold α/m to all tests, so it strictly lowers Type II error.
(B) Because it sequentially adjusts thresholds for each ordered p-value, often rejecting more

hypotheses than Bonferroni does.
(C) Because it computes new p-values after each rejection, effectively doubling the threshold

each time.
(D) Because it merges all p-values into one global statistic, rejecting them together at level α.

Answer: (B).
Holm’s method is typically less conservative than Bonferroni because it sets thresholds in a
stepwise sequence (starting from α/m, then α/(m − 1), etc.), which often leads to more rejections
than using a uniform cutoff of α/m.
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Illustration: Power vs. FWER trade-off
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Figure: In a simulation with 90% of m nulls true, the power is displayed against FWER. Colors of the
curves: m = 10 (orange), m = 100 (blue), m = 500 (purple). Larger m reduces power. The vertical
dashed line marks FWER=0.05 [JWHT21, Figure 13.5].
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FWER control may not suffice

FWER demands no false rejections with probability at least 1 − α:
• Very stringent if m is large
• Tends to reduce power (fewer true positives found)

In modern “exploratory” studies:
• We may tolerate a small fraction of false positives to discover more true ones
• This leads to the false discovery rate (FDR) approach

H0 is true H0 is not true

Reject H0 Type-I error (FP) Correct (TP)
Not reject H0 Correct (TN) Type-II error (FN)
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False discovery rate (FDR): Definition and motivation

Motivation: Controlling FWER can be too conservative for large m

Instead: control the fraction of rejected hypotheses that are false positives

FDP = # false positives
# total rejections = # FP

# FP + # TP
• Controlling FDP is impossible because we never know which H0j are true/false

False discovery rate (FDR) = E[FDP]
• Allow up to fraction q of false positives on average among the “claimed discoveries”
• The choice of q is context- and dataset-dependent (no gold standard like α = 0.05)

Properties:
• Accept a small fraction of false positives, in exchange for more total discoveries
• Typically yields more rejections ("discoveries") than FWER-based methods
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Controlling FDR: Benjamini–Hochberg procedure

Benamini-Hochberg procedure
1 Specify q, the level at which to control the FDR
2 Compute the p-values for the m null hypotheses, H01, . . . , H0m

3 Sort p-values so that p(1) ≤ p(2) ≤ · · · ≤ p(m)

4 Define
L = max

{
j : p(j) <

qj
m

}
5 Reject all null hypotheses H0j for which pj ≤ p(L)

Result:
• Ensures FDR ≤ q, but but not necessarily small FWER
• Typically more powerful, yielding more rejections, than Bonferroni/Holm if m is large
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Example: Benjamini-Hochberg procedure

Example
Step 1: Set q = 0.05

Step 2: p1 = 0.0018, p2 = 0.009, p3 = 0.021, p4 = 0.034, p5 = 0.045, p6 = 0.070.

Step 3: Sort p-values p(1) = 0.0018, p(2) = 0.009, p(3) = 0.021, p(4) = 0.034, p(5) = 0.045, p(6) = 0.070.

Step 4: Find L = 3 because

k = 1 : 0.0018 ≤ 0.05 ×
1
6

≈ 0.0083? ✓

k = 2 : 0.009 ≤ 0.05 ×
2
6

≈ 0.0167? ✓

k = 3 : 0.021 ≤ 0.05 ×
3
6

= 0.025? ✓

k = 4 : 0.034 ≤ 0.05 ×
4
6

≈ 0.0333? No ( 0.034 > 0.0333 )

Step 5: Reject H(1), H(2), H(3).

Conclusion: BH rejects 3, while Holm rejects 2, Bonferroni rejects 1.
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Visual comparison: Bonferroni vs. Benjamini-Hochberg
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Figure: Panels: same set of m = 2000 sorted p-values for the Fund dataset. Green lines: thresholds for FWER
control (Bonferroni) at α = 0.05, 0.1, 0.3 (left to right). Orange lines: thresholds for FDR control
(Benjamini-Hochberg) at q = 0.05, 0.1, 0.3 (left to right). E.g., When the FDR is controlled at q = 0.1, 146 nulls
are rejected (center, blue points). At q = 0.3, 279 nulls are rejected (right, blue points) [JWHT21, Figure 13.6].
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Pop-up quiz #2: Comparing FDR vs. FWER

You have m hypotheses to test. The False Discovery Rate (FDR) is defined as E
[
FDP

]
, where

FDP = #FP
#FP+#TP . Which statement best captures a key difference between FDR and

FWER?
(A) FDR forces the probability of zero false positives to stay below α, whereas FWER allows a

small fraction q.
(B) FDR aims to keep E[fraction of false positives among rejections] ≤ q, while FWER demands

Pr(at least one false positive) ≤ α.
(C) Under FDR control, no false positives are allowed once you discover enough true positives.
(D) FDR only works for independent tests, but FWER can handle correlated tests without

adjustments.

Answer: (B).
FDR control (e.g., Benjamini–Hochberg) allows a certain fraction of false positives on average,
whereas FWER control (e.g., Bonferroni/Holm) requires the chance of any false positive be
controlled below α.
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Wrap-up

• FWER (Bonferroni/Holm):
• Strictly ensures Pr(any false positive) ≤ α

• Conservative for large m, leading to fewer rejections & reduced power

• FDR (Benjamini–Hochberg):
• Controls the expected fraction of false positives among rejections
• Typically yields more rejections than FWER, especially for large m

• Practical consideration:
• Use FWER for strict confirmatory analyses needing minimal Type I error
• Use FDR for exploratory, large-scale studies, tolerating some false positives to

gain more discoveries
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