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Announcement

Midterm 2 on Fri, May 16 (12:10 pm–1:00 pm in class)
• See Canvas announcement (or Lec. 17/18 slides) for allowed materials, etc.
• Coverage: Lectures 12–19
• A practice midterm and answer key are available on the course webpage
• Office hours this week:

• Instructor: Wed, 4–6pm (extended); no OH Thu
• TA: Thu 1–2pm

Remote lecture (Zoom) on Mon, May 19
• Zoom link will be emailed via Canvas
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https://canvas.ucdavis.edu/courses/975009/discussion_topics/1493959
https://dogyoons.github.io/teaching/sta35c/exams/practice/STA035C_Mock_midterm2.pdf
https://dogyoons.github.io/teaching/sta35c/exams/practice/STA035C_Mock_midterm2_sol.pdf


Today’s topics

• Recap: Multiple hypotheses testing
• Goals to control false positives

• Brief review for midterm 2
• Cross-validation
• Bootstrap
• Subset selection
• Regularization
• Multiple hypotheses testing
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Recap: Multiple testing

Single-hypothesis test:
• Typically set up H0, and gather data to reject it if there is significant evidence
• Type I error = false positive; Type II error = false negative
• Each test has Type I error at most α (e.g. 0.05)

Modern data analysis: multiple tests simultaneously
• E.g. Testing thousands of predictors or biomarkers to discovery significant ones
• If m is large, false rejections can occur easily by chance
• On average, α × m false positives if each is tested at level α

Key challenge: How to address inflated false positives as m grows
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Hypothesis testing as classification

A single hypothesis test classifies H0 as “true or not”:
• Goal: Discover "real phenomenon" (H1) or conclude non-existence (H0)

• H0 is true ⇐⇒ no real effect
• H0 is false ⇐⇒ there is a real effect (H1)
• We “discover” an effect by rejecting H0

• Test as classification: Depending on evidence gathered from data,
• Reject H0 ⇐⇒ classify Ĥ = 1
• Fail to reject H0 ⇐⇒ classify Ĥ = 0

H0 is true ("H=0") H0 is not true ("H=1")

Reject H0 ("Ĥ=1") FP (Type I) TP
Not reject H0 ("Ĥ=0") TN FN (Type II)
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Hypothesis test at level α

Consider the probabilities of each outcome for hypothesis test

H0 is true ("H=0") H0 is not true ("H=1")

Reject H0 ("Ĥ=1") pFP pTP
Not reject H0 ("Ĥ=0") pTN pFN

Hypothesis test at level α:
• Pr(reject H0 | H0 true) ≤ α

• That is, the chance of a false positive is at most α

Pr(Ĥ = 1 | H = 0) = Pr(Ĥ = 1 & H = 0)
Pr(H = 0) = pFP

pFP + pTN
≤ α
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Testing multiple hypotheses at level α

Suppose we test m hypotheses H0,1, . . . , H0,m, all at level α, obtaining confusion matrix:

H0 is true H0 is not true

Reject H0 NFP NTP
Not reject H0 NTN NFN

• NFP, NTP, NTN, NFN are random variables that sum to m
• Roughly, we expect NFP ≈ m · pFP; when all m nulls are true, NFP ≈ m · α

If these m tests are independent,
• Probability of at least one false positive ≈ 1 − (1 − α)m

• For m = 20, α = 0.05, that probability is ≈ 64%
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Family-wise error rate (FWER)

H0 is true H0 is not true

Reject H0 NFP NTP
Not reject H0 NTN NFN

Goal: Ensure NFP < 1 with high probability

FWER = Pr(NFP ≥ 1)

• Bonferroni correction sets each test at α/m to keep FWER ≤ α (union bound)
• Holm’s step-down procedure refines this by adapting thresholds step by step

Interpretation: Controlling FWER ≤ α ensures we have no Type I errors with
probability at least 1 − α
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False discovery rate (FDR)

H0 is true H0 is not true

Reject H0 NFP NTP
Not reject H0 NTN NFN

FDR Strategy: Increase NTP at the cost of tolerating a moderate NFP
• Strict FWER control often yields many Type II errors (missing real signals)
• FDR-based approach lets us accept some false positives but aims for higher power

(detecting more TP)
• NFP: “false discoveries”
• NTP: “true discoveries”
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False discovery rate control

H0 is true H0 is not true

Reject H0 NFP NTP
Not reject H0 NTN NFN

False discovery proportion: fraction of false discoveries among all "claimed" (Ĥ = 1)

FDP = NFP
NFP + NTP

False discovery rate (FDR): FDR = E[FDP]
• Controlling FDR at q (e.g., 5% or 10%) means E[FDP] ≤ q
• Methods like Benjamini–Hochberg aim to maintain FDR ≤ q while rejecting more

nulls than strict FWER approaches
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Pop-up quiz: Comparing FDR vs. FWER

You have m hypotheses to test. The False Discovery Rate (FDR) is defined as E
[
FDP

]
, where

FDP = #FP
#FP+#TP . Which statement best captures differences between FDR and FWER?

(A) FDR forces the probability of zero false positives to stay below α, whereas FWER allows a
small fraction q.

(B) FDR aims to keep E[fraction of false positives among rejections] ≤ q, while FWER demands
Pr(at least one false positive) ≤ α.

(C) Under FDR control, no false positives are allowed once you discover enough true positives.
(D) FDR only works for independent tests, but FWER can handle correlated tests without

adjustments.

Answer: (B).
FDR control (e.g., Benjamini–Hochberg) allows a certain fraction of false positives on average,
whereas FWER control (e.g., Bonferroni/Holm) requires the chance of any false positive be
controlled below α.
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Review: Cross-validation

Goal: Estimate test performance from training data alone

Key ideas:
• Single split (validation set): random partition into train/test; simple but high variance
• LOOCV (leave-one-out): train on n − 1 points, validate on 1 point, repeat for all points
• k-fold CV: partition data into k folds, systematically rotate which fold is the validation set

Trade-offs:
• Fewer folds (e.g. 5- or 10-fold) reduce computation but can have slightly higher variance
• LOOCV uses maximum training size (n − 1) but is more expensive and can have higher

correlation across folds

Usage:
• Model selection: pick model that yields lowest CV error
• Tuning parameters (e.g. λ in ridge/lasso)
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Review: Bootstrap

Goal: Approximate the sampling distribution (e.g. standard errors) using just one dataset

Method:
• Sample n points with replacement from the original dataset of size n (a “bootstrap sample”)
• Compute desired statistic (mean, regression coefficient, etc.) on the bootstrap sample
• Repeat B times, forming a distribution of the statistic estimates {θ̂∗

1 , . . . , θ̂∗
B}

Bootstrap SE/CI:

• Standard error ≈ SD(θ̂∗
b) =

√
1

B−1
∑B

b=1(θ̂∗
b − θ̄∗)2

• Use percentiles or normal approximation to construct confidence intervals
• Interpreting the coverage of confidence intervals requires care

Key premise: The observed sample is representative of the population
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Review: Subset selection

Goal: Identify a relevant subset of predictors among many

Best subset selection:
• Tries all 2p subsets (exhaustive); picks the best model for each size k, then chooses among

them by adjusted R2, CV, etc.
• Feasible only if p is small or moderate (can be very expensive for large p)

Forward/backward stepwise:
• Greedy approximations: add/remove one predictor at a time
• Complexity O(p2) vs. 2p for best subset
• Might miss the absolute best subset but often works well in practice

Pros/Cons:
• Direct variable selection (some coefficients set to zero)
• Can be unstable for large p; small changes in data may change chosen subset
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Review: Regularization

Motivation: Least squares can be unstable or undefined if p ≈ n or p > n; high variance or
collinearity issues

Ridge regression:
• Add penalty λ

∑
j β2

j

• Typically shrinks all coefficients; no exact zeros
• More stable under collinearity

Lasso:
• Add penalty λ

∑
j |βj |

• Can zero out some coefficients, enabling variable selection
• Slightly less stable than ridge if predictors are highly correlated

Tuning λ: Usually chosen by cross-validation; neither ridge nor lasso always wins—depends on
data and interpretability needs
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Review: Multiple hypotheses testing

Problem: Testing many hypotheses inflates chance of false positives
• Probability(≥ 1 false positive) can be 1 − (1 − α)m if tests are independent
• p-hacking: repeatedly searching for small p-values leads to spurious “discoveries”

FWER (Family-Wise Error Rate):
• Probability of any (=at least 1) false positive
• Bonferroni, Holm’s step-down keep FWER ≤ α

• Often conservative, can reduce power when m is large

FDR (False Discovery Rate):
• Expected fraction of false positives among rejections (=FP + TP)
• Benjamini–Hochberg procedure can control FDR
• Less conservative, typically yields more rejections, tolerating some false positives
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