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Announcement

Midterm 2 solution and scores are posted online

® You can review your graded exam during tomorrow’s discussion section

Grade disputes/adjustments

® |f you believe your score should be changed for any question, please email the TA by noon
on Wednesday (May 21) including:
® The specific problem(s) you request regrading
® A clear explanation of why you believe your answer merits more credit (e.g., by pointing
out the key elements in your answer that match the official solution)
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Where we are so far

We have covered foundational topics in supervised learning:

Regression/Classification basics

Resampling methods: Cross-validation & bootstrap

Model selection: Subset selection and regularization (ridge & lasso)
Multiple testing: FWER and FDR

Next topics:
¢ Beyond linear models:
® Basis functions & regression splines
¢ Unsupervised learning:

® Principal component analysis (PCA)
® Clustering
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Today’s topics

e Basis functions

® Recall: polynomial regression
e Step functions
® How basis functions unify these ideas

® Regression splines

Piecewise polynomials
Smoothness constraints at knots
Truncated power basis representation

[ ]
[}
[ ]
e "Natural" splines

4/19



Motivation for basis functions: Beyond linear models

Linear regression is powerful but can sometimes be restrictive
® Assumes Y ~ (g + Zj'):l B;jX;, i.e. a purely linear combination of predictors
® Real data often exhibits more complex, nonlinear relationships

Goal: Extend linear regression to capture nonlinearities while retaining interpretability
and tractable estimation

Examples:
® Polynomial regression: use (X, X?,X3,...)
® Step functions: approximate the regression function by piecewise-constant segments

Today’s plan:
® Review polynomial regression & define step functions
® Unify these via basis functions
® |ntroduce splines for even more flexible piecewise polynomials
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Example 1: Polynomial regression

Polynomial regression: Replace the standard linear model
Y =080+ /X+e

with a polynomial:
Y = Bo+ BiX+ BaX?+ o 4 BaX e

Remarks:
® The coefficients 1, ..., 84 can be estimated by standard least squares
® Multiple regression with X, X?,--- treated as distinct predictors

e Typically, a moderate degree d (2—4) is used to avoid overfitting
® Assumes a single global polynomial shape, which can be overly rigid for complex data
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Example 1: Polynomial regression (illustration)

Degree-4 Polynomial
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Figure: Polynomial fit on Wage data. (Left) A degree-4 polynomial of wage on age, with 95% confidence
bands. (Right) Logistic regression for wage>$250k using a degree-4 polynomial [JWHT21, Figure 7.1].

e Advantage: More flexible than a strictly linear model

® Limitation: Imposing a global polynomial shape might be too restrictive
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Example 2: Step functions

Idea: Partition a continuous variable X into intervals, treating each as a separate "level"
® For cutpoints ¢; < ¢ < ¢3..., define indicator functions:

Co(X) =l wcc)(X),  G(X) = lig,e(X),  C(X) = lcpe)(X) -

® The indicator function
1 ifxes,
/s(X) = X
0 ifx¢gs.
® Another common convention for the indicator function: I(x € S) = Is(x)
® The fitted model is piecewise constant:

Bo x < ¢,
Bo + F1 a < x < o,

EY [X=x]=Po+fr- GX)+ B2 G(X)+ =95 1818 o<x<a,
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Example 2: Step functions (illustration)

Piecewise Constant
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Figure: Step-function fit on Wage data. (Left) Piecewise-constant model for wage on age, with 95%
confidence bands. (Right) Logistic regression for wage>$250k using a step function [JWHT21, Figure 7.2].

e Advantage: Easy to capture abrupt changes (“jumps”)

¢ Limitations Not smooth; can be too coarse with few cutpoints
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Basis functions: Bridging polynomial, step, and more

Key idea: Transform X to construct new features {b1(X),..., bx(X)}, then fit a linear
model in those features:

Y & Bo+ B1b1(X) + -+ + B bk(X)

Examples of basis functions:
® Polynomials: b1(X) = X, by(X) = X?,...
e Step functions: bi(X) = Il(c1 < X < @), bo(X) =l(ca < X < c3),...
® Splines: piecewise polynomials with continuity constraints
® Best of both polynomials and step functions

Benefits:
e Still a linear model in the transformed features {b(X)}

® Those basis functions can capture nonlinearities more flexibly
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Regression splines: Main concept

Want: More flexible than a single polynomial, but smoother than step functions

Idea:
® Piecewise polynomials of degree d, joined at knots (cutpoints)
e Within each interval between knots, fit a separate polynomial (e.g. cubic)
® |mpose smoothness constraints at each knot, preventing abrupt jumps or kinks

Example (degree d = 3, one knot at c):

) Bor + BuX + B X2+ ... BgiX?+e, ifx<c,
Boz + BraX + BooX2 4 ... B X +¢€, ifx>c.

We usually require continuity of the function and its derivatives up to order d — 1 at x = ¢

— See the next slide for an illustration
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Cubic spline illustration: Ensuring smoothness
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Figure: Various piecewise polynomials fit to a subset of the Wage data, with a knot at age=50. Left:
Unconstrained polynomials cause a discontinuity. Center: Imposing continuity at the knot eliminates
jumps but can form a “kink.” Right: Additionally constraining continuity of first and second derivatives
yields a smooth cubic spline. Excerpted from [JWHT21, Figure 7.3].
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Comparing cubic vs. linear splines

Cubic Spline Linear Spline
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Figure: Again with a knot at age=50 on a subset of Wage. Left: A cubic spline, enforcing continuity of
function plus its 1st and 2nd derivatives. Right: A linear spline, only requiring continuity of function at
the knot age=50. Excerpted from [JWHT21, Figure 7.3].
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Degrees of freedom for splines

Each additional basis function adds model parameters, increasing flexibility

Piecewise polynomial of degree d with K knots:

® (d + 1) polynomial coefficients in each of the (K + 1) intervals
= (K +1) x (d + 1) parameters in total before smoothness constraints

® Each knot imposes d smoothness constraints (function + (d — 1) derivatives)
® K x d constraints in total

® The final degrees of freedom = (K +1)(d+1) - K-d=(d+1)+ K
® e.g., a cubic spline (d = 3) with K knots has (3+ 1) + K = K + 4 parameters

Trade-off:
® Enough degree and knots to capture possible nonlinearities

® But not so many that we overfit or lose interpretability
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Spline basis representation: Truncated power basis

Key question: How to systematically fit a piecewise polynomial, enforcing the
smoothness constraints at the knots?

Truncated power basis for a degree-d spline:

LX, X3 X u{ X-—a)i k=1...K}

base polynomials truncated power basis

where (x — ¢)4 = max{x — c,0}9

® Then, we can write
K
f(X):ﬁo—l-ﬁlX-i-"'—l—ﬂdXd + Zﬁd+k(X—ck)i
k=1

® This representation automatically encodes smoothness constraints
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A toy numerical example: Piecewise linear spline

Example

Let X range in [0, 8] with knots at x = 2,5. Use piecewise linear polynomials (degree d = 1). Hence, from
DoF formula (d +1) + K = (1 + 1) + 2 = 4 total parameters.

Basis representation:
bi(x) =1, bo(x)=x, bs(x)=(x—2)y, ba(x)=(x—-5)+, (u)+ = max(u,0).
Then the resulting linear spline model—which can be fit by least squares—is

Y(x) = B1bi(x) + B2 ba(x) + B3 bs(x) + Ba ba(x).

Interpretation:
® (3 is the base intercept.
® 3 is the slope for 0 < x < 2.
® 33 modifies the slope for 2 < x < 5, so the slope in [2,5] is 32 + (3.

® [, further modifies the slope for x > 5, so the slope in [5,8] is 82 + 83 + Sa.
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Cubic spline vs.

natural cubic spline
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Figure: A cubic spline and a natural cubic spline,

with three knots, fit to a subset of the Wlage data.

The dashed lines denote the knot locations
[JWHT21, Figure 7.4].

Natural spline:

® Imposes additional constraints that
the function is linear beyond the
outermost knots

® Avoids wild oscillations near
boundaries

® Often more stable in practice
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Wrap-up & next steps

e Basis functions: unify polynomial, step, and other expansions for X

® Allows us to remain in a linear model framework, but with more flexible forms

® Regression splines:
® Piecewise polynomials with continuity at knots
® Truncated power basis provides a neat representation
® “Natural” splines add linear constraints in outer intervals

Choosing how many knots (and where) to get enough flexibility without
overfitting is crucial — more on this next time
® Next lecture:

® More on regression splines

® Smoothing splines
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