## STA 35C: Statistical Data Science III

Lecture 21: Regression Splines (cont'd) & Smoothing Splines

Dogyoon Song

Spring 2025, UC Davis

# **Today's topics**

- Quick review
  - Basis function
  - Regression spline
- Regression splines (cont'd)
  - Truncated power basis representation
  - "Natural" splines
  - How to place knots
- Smoothing splines
  - Overview: interpolation + smoothness penalty
  - Choosing the smoothness parameter

# Quick review: Basis functions & regression splines

**Basis function:** Fit a linear model in transformed features  $b_1(X), \ldots, b_K(X)$ 

$$Y \approx \beta_0 + \beta_1 \cdot b_1(X) + \cdots + \beta_K \cdot b_K(X)$$

- Retains the simple linear-model form yet can model nonlinearities flexibly
- Examples:
  - Polynomials:  $b_1(X) = X, b_2(X) = X^2,...$
  - Step functions:  $b_1(X) = I_{(c_1,c_2]}(X), \ b_2(X) = I_{(c_2,c_3]}(X), \dots$

#### Regression splines:

- Piecewise polynomials of degree d, joined smoothly at knots (cutpoints)
- Continuity constraints at the knots for the function and its first (d-1) derivatives
- Degrees of freedom: a degree-d spline with K knots has (d+1)+K parameters

### Why regression splines?

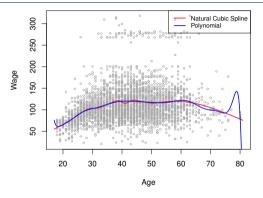


Figure: On the Wage data set, a natural cubic spline with 15 degrees of freedom (blue) vs. a degree-15 polynomial (red). Polynomials can oscillate excessively near the edges, while splines are more stable [JWHT21, Figure 7.7].

- Higher-degree polynomials can be flexible but often exhibit unwanted oscillations
- Splines restrict the polynomial degree while increasing flexibility via knots, yielding more stable fits

# Spline basis representation: Truncated power basis

**Key question:** How to construct a piecewise polynomial that remains d-1 times continuously differentiable at each knot?

**Truncated power basis** for a degree-*d* spline:

$$\underbrace{1, X, X^2, \dots, X^d}_{\text{base polynomials}} \cup \underbrace{\{X - c_k\}_+^d}_{\text{truncated power basis}} : k = 1 \dots K\}$$

where 
$$(x - c)_{+}^{d} = \max\{x - c, 0\}^{d}$$

• Then, a regression spline has the form

$$f(x) = \beta_0 + \beta_1 X + \dots + \beta_d X^d + \sum_{k=1}^K \beta_{d+k} (X - c_k)_+^d$$

- ullet This representation automatically ensures continuity up to order d-1 at each knot
- Software packages (splines in R, etc.) typically handles this basis internally

# Spline basis representation: Truncated power basis (cont'd)

A closer look into why/how truncated power basis ensures continuity:

• A function f is continuous at  $x_0$  if

$$\lim_{x \to x_0 -} f(x) = f(x_0) = \lim_{x \to x_0 +} f(x)$$

• Observe that for  $f(x) = (x - c_k)_+^d$ ,

$$\lim_{x \to c_k -} f(x) = 0,$$
 $f(c_k) = 0,$ 
 $\lim_{x \to c_k +} f(x) = 0.$ 

• You can similarly verify the continuity of derivatives; Homework 5, Problem 3-1)

## **Example: Truncated power basis for linear spline**

#### Example

Let X range in [0,8] with knots at x=2,5. Use piecewise linear polynomials (degree d=1). Hence, from DoF formula (d+1)+K=(1+1)+2=4 total parameters.

#### Basis representation:

$$b_1(x) = 1$$
,  $b_2(x) = x$ ,  $b_3(x) = (x-2)_+$ ,  $b_4(x) = (x-5)_+$ ,  $(u)_+ = \max(u,0)$ .

Then the resulting linear spline model—which can be fit by least squares—is

$$\widehat{y}(x) = \beta_1 b_1(x) + \beta_2 b_2(x) + \beta_3 b_3(x) + \beta_4 b_4(x).$$

#### Interpretation:

- $\beta_1$  is the base intercept.
- $\beta_2$  is the slope for  $0 \le x \le 2$ .
- $\beta_3$  modifies the slope for  $2 < x \le 5$ , so the slope in (2,5] is  $\beta_2 + \beta_3$ .
- $\beta_4$  further modifies the slope for x > 5, so the slope in (5,8] is  $\beta_2 + \beta_3 + \beta_4$ .

### **Natural splines**

Even a moderate-degree spline can exhibit wild curvature near the boundary

**Natural splines**<sup>1</sup> impose extra constraints at the boundary so that the spline is linear beyond the outermost knots:

- In practice, "natural spline" typically means a natural cubic spline
- For a cubic spline, this is equivalent to forcing f''(x) = 0 beyond the outer knots
  - This imposes two extra constraints, reducing DoF by 2
  - A natural cubic spline has (K+2) parameters, whereas a cubic spline with K knots has (K+4)
- This usually restrains erratic tail behavior and yields narrower confidence intervals

<sup>&</sup>lt;sup>1</sup>A canonical basis for natural splines exists, but we skip details here. In R, see splines::ns().

### Illustration: Cubic spline vs. natural cubic spline

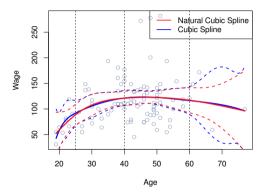


Figure: A cubic spline (blue) vs. a natural cubic spline (red) on a subset of the Wage data; vertical dashed lines show 3 knot locations. Note that natural spline is linear beyond the outer knots [JWHT21, Figure 7.4].

- Confidence intervals are narrower for natural splines
- Less risk of "wild" behavior near edges

# Pop-up quiz #1: Splines & natural splines

### Which statement is **false** regarding cubic and natural cubic splines?

- A) A cubic spline with K knots has (K + 4) degrees of freedom.
- B) A natural cubic spline with K knots forces linear behavior outside the outermost knots.
- C) Enforcing the second derivative to be zero at the boundaries increases the total degrees of freedom by 2.
- D) A natural cubic spline with K knots has (K + 2) degrees of freedom.

# **Answer:** (C) is false.

Enforcing a zero second derivative at the boundaries *reduces* the degrees of freedom by 2, which explains why a natural cubic spline with K knots has (K + 2) rather than (K + 4) parameters.

## Where to place knots?

### Knots may be placed in various ways:

- Uniform width: Evenly spaced across the range of X
- Uniform mass: At quantiles, so each segment has roughly equal datapoints
- Additionally, domain knowledge may help identify critical breakpoints
- Cross-validation can be used to pick an optimal set of knots

#### Typical practice:

- For smaller data sets, use a moderate number of knots (e.g. 3-5)
- For large data or highly nonlinear relationships, more knots might help
- Choose or refine knot placement by cross-validation or certain information criteria

### How many knots should we have?

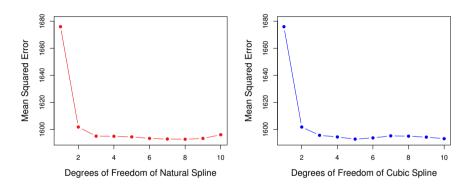


Figure: CV MSEs for different degrees of freedom in splines on the Wage data, modeling wage vs. age. Left: natural cubic spline. Right: cubic spline [JWHT21, Figure 7.6].

**Question:** how many knots ←→ how many degrees of freedom ⇒ **Answer:** use cross-validation

# **Example 2: Placing knots (uniform width vs. uniform mass)**

### Example

**Setup:** Suppose we have a hypothetical dataset with n = 12 points,  $X \in [0, 12]$ :

$$X = \{0.2, 0.9, 1.1, 2.2, 5.5, 6.0, 6.2, 8.0, 8.2, 10.8, 11.9, 12.0\}.$$

### Two ways to pick knots (2 interior knots => 3 segments):

- 1) **Uniform width**: Even spacing in [0, 12].
  - e.g. knots at x = 4 and x = 8.
  - segments: [0,4], (4,8], (8,12].
- 2) Uniform mass: Each segment equally gets 4 data points
  - After the 4th observation, place a knot near 2.2.
  - After the 8th observation, place a knot near 8.0.
  - segments: [0, 2.2], (2.2, 8], (8, 12].

### **Smoothing splines: Formulation**

**Goal:** Estimate a function g(x) that fits observed data  $(x_i, y_i)$  well, avoiding overfitting

We minimize a combination of (1) data fidelity and (2) a smoothness penalty:

$$\min_{g \in \mathcal{G}} \left\{ \underbrace{\sum_{i=1}^{n} (y_i - g(x_i))^2}_{\text{RSS}} + \lambda \underbrace{\int (g''(t))^2 dt}_{\text{smoothness penalty}} \right\}$$

- The parameter  $\lambda \geq 0$  balances data fit vs. smoothness
  - $\lambda = 0$ : interpolates all points (leading to a potentially wiggly function)
  - $\lambda \to \infty$ : slope is constant, i.e., a straight least squares line
- The solution turns out a *natural cubic spline* with knots at each  $x_i$ , but *shrunken* relative to a standard regression spline

In R: The function smooth.spline() (in base R) performs smoothing spline fitting

# Smoothing splines: Role of the curvature penalty

### Why penalize $\int (g''(t))^2 dt$ ?

- The second derivative measures how sharply g bends
- A large  $(g'')^2$  indicates "wavy" or erratic behavior
- Minimizing  $\int (g'')^2$  forces smaller curvature, yielding a smoother shape

#### Interpretation of smoothness:

- The penalty  $\int (g'')^2$  aims to control "roughness" or high-frequency wiggles
- A more wiggly g has bigger  $(g'')^2$ , thus a larger penalty

#### Regression splines vs. smoothing splines:

- Regression splines: fix knots/degree and enforce derivative continuity
- **Smoothing splines**: solve a *penalized* least squares problem; knots effectively spread out adaptively to balance data fit vs. smoothness.

### Choosing the smoothing parameter $\lambda$

#### Effective degrees of freedom:

- As  $\lambda$  increases from 0 to  $\infty$ , the solution transitions from an *interpolation* spline (exactly fitting all data) to a simple *straight line*
- The *effective* degrees of freedom,  $df_{\lambda}$ , correspondingly decreases from n to 2
  - Degrees of freedom = the number of free parameters
  - The n parameters of smoothing spline are often "shrunk" due to penalty
- ullet df $_{\lambda}$  quantifies the spline's complexity, even though we do not explicitly choose knots

### Selecting $\lambda$ (or $df_{\lambda}$ ):

- Typically use cross-validation
  - Smoothing splines have a handy formula to compute LOOCV errors without re-fitting
- In practice:
  - Pick a small grid of  $\lambda$ -values (or  $df_{\lambda}$ -values)
  - Compute CV error and select the minimizer

If interested, see [JWHT21, Sec. 7.5.2] for technical details

# Pop-up quiz #2: Smoothing splines

### Which statement is **false** about smoothing splines?

- A) They solve a penalized least squares problem with a curvature penalty,  $\int (g''(t))^2 dt$ .
- B) As the smoothing parameter  $\lambda \to 0$ , the spline interpolates all data points, possibly becoming wiggly.
- C) As  $\lambda \to \infty$ , the spline degenerates to a simple linear fit.
- D) The effective degrees of freedom always remains fixed at 4 for any smoothing spline fit.

## **Answer:** (D) is false.

The effective degrees of freedom for a smoothing spline varies between n (very wiggly, when  $\lambda=0$ ) and 2 (almost a straight line, as  $\lambda\to\infty$ ), not a fixed value of 4.

# R example: Fitting splines on a toy dataset

#### Data Setup:

```
set.seed(111)
x <- seq(0, 10, length.out=30)
y <- 2 + 3*sin(x) + rnorm(30, sd=0.3)
df <- data.frame(x, y)</pre>
```

#### Regression spline (cubic):

```
# Use 'bs()' from 'splines' package for B-spline basis
library(splines)

# Fit a cubic regression spline with, say, 2 internal knots
fit_spline <- lm(y ~ bs(x, degree=3, knots=c(3,7)), data=df)

# Predictions
x_new <- seq(0,10,length=200)
pred_spline <- predict(fit_spline, newdata=data.frame(x=x_new))</pre>
```

# R example: Fitting splines on a toy dataset (cont'd)

#### Natural spline (cubic by default):

```
# 'ns()' builds a natural spline basis
fit_ns <- lm(y ~ ns(x, df=5), data=df)
pred_ns <- predict(fit_ns, newdata=data.frame(x=x_new))</pre>
```

#### **Smoothing spline:**

```
# 'smooth.spline()' solves the penalized objective
fit_smooth <- smooth.spline(x, y, df=6)
pred_smooth <- predict(fit_smooth, x=x_new)$y</pre>
```

**Note:** You can then plot  $\hat{y}(x)$  for each model to compare

For more example codes, see [JWHT21, Sec. 7.8.1 & 7.8.2]

### Wrap-up: Takeaways

#### • Regression splines:

- Piecewise polynomials + continuity constraints
- Truncated power basis for an easy linear-model fit
- "Natural" splines impose linear boundary conditions to avoid erratic tails
- Choose knot placement / number of knots via cross-validation

#### Smoothing splines:

- A penalized approach balancing data fit vs. curvature
- The solution is a natural cubic spline with knots at each data point
- $\lambda \to 0$  yields interpolation;  $\lambda \to \infty$  yields a line
- Effective degrees of freedom: from *n* to 2
- Typically choose  $\lambda$  by cross-validation

### References



Gareth James, Daniela Witten, Trevor Hastie, and Robert Tibshirani.

An Introduction to Statistical Learning: with Applications in R, volume 112 of Springer Texts in Statistics.

Springer, New York, NY, 2nd edition, 2021.