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Today’s topics

• Quick review
• Basis function
• Regression spline

• Regression splines (cont’d)
• Truncated power basis representation
• "Natural" splines
• How to place knots

• Smoothing splines
• Overview: interpolation + smoothness penalty
• Choosing the smoothness parameter
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Quick review: Basis functions & regression splines

Basis function: Fit a linear model in transformed features b1(X ), . . . , bK (X )

Y ≈ β0 + β1 · b1(X ) + · · ·+ βK · bK (X )

• Retains the simple linear-model form yet can model nonlinearities flexibly
• Examples:

• Polynomials: b1(X ) = X , b2(X ) = X 2, . . .
• Step functions: b1(X ) = I(c1,c2](X ), b2(X ) = I(c2,c3](X ), . . .

Regression splines:
• Piecewise polynomials of degree d , joined smoothly at knots (cutpoints)
• Continuity constraints at the knots for the function and its first (d − 1) derivatives
• Degrees of freedom: a degree-d spline with K knots has (d + 1) + K parameters
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Why regression splines?
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Figure: On the Wage data set, a natural cubic spline with 15 degrees of freedom (blue) vs. a degree-15 polynomial
(red). Polynomials can oscillate excessively near the edges, while splines are more stable [JWHT21, Figure 7.7].

• Higher-degree polynomials can be flexible but often exhibit unwanted oscillations
• Splines restrict the polynomial degree while increasing flexibility via knots, yielding more

stable fits
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Spline basis representation: Truncated power basis

Key question: How to construct a piecewise polynomial that remains d − 1 times
continuously differentiable at each knot?

Truncated power basis for a degree-d spline:

1, X , X 2, . . . , Xd︸ ︷︷ ︸
base polynomials

∪ { (X − ck)d
+︸ ︷︷ ︸

truncated power basis

: k = 1 . . . K}

where (x − c)d
+ = max{x − c, 0}d

• Then, a regression spline has the form

f (x) = β0 + β1X + · · ·+ βdXd +
K∑

k=1
βd+k (X − ck)d

+

• This representation automatically ensures continuity up to order d − 1 at each knot
• Software packages (splines in R, etc.) typically handles this basis internally
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Spline basis representation: Truncated power basis (cont’d)

A closer look into why/how truncated power basis ensures continuity:

• A function f is continuous at x0 if

lim
x→x0−

f (x) = f (x0) = lim
x→x0+

f (x)

• Observe that for f (x) = (x − ck)d
+,

lim
x→ck−

f (x) = 0,

f (ck) = 0,

lim
x→ck+

f (x) = 0.

• You can similarly verify the continuity of derivatives; Homework 5, Problem 3-1)
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Example: Truncated power basis for linear spline

Example
Let X range in [0, 8] with knots at x = 2, 5. Use piecewise linear polynomials (degree d = 1). Hence, from
DoF formula (d + 1) + K = (1 + 1) + 2 = 4 total parameters.

Basis representation:

b1(x) = 1, b2(x) = x , b3(x) = (x − 2)+, b4(x) = (x − 5)+, (u)+ = max(u, 0).

Then the resulting linear spline model—which can be fit by least squares—is

ŷ(x) = β1 b1(x) + β2 b2(x) + β3 b3(x) + β4 b4(x).

Interpretation:
• β1 is the base intercept.
• β2 is the slope for 0 ≤ x ≤ 2.
• β3 modifies the slope for 2 < x ≤ 5, so the slope in (2,5] is β2 + β3.
• β4 further modifies the slope for x > 5, so the slope in (5, 8] is β2 + β3 + β4.
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Natural splines

Even a moderate-degree spline can exhibit wild curvature near the boundary

Natural splines1 impose extra constraints at the boundary so that the spline is linear
beyond the outermost knots:
• In practice, "natural spline" typically means a natural cubic spline
• For a cubic spline, this is equivalent to forcing f ′′(x) = 0 beyond the outer knots

- This imposes two extra constraints, reducing DoF by 2
- A natural cubic spline has (K + 2) parameters, whereas a cubic spline with K

knots has (K + 4)
• This usually restrains erratic tail behavior and yields narrower confidence intervals

1A canonical basis for natural splines exists, but we skip details here. In R, see splines::ns().
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Illustration: Cubic spline vs. natural cubic spline
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Figure: A cubic spline (blue) vs. a natural cubic spline (red) on a subset of the Wage data; vertical dashed lines
show 3 knot locations. Note that natural spline is linear beyond the outer knots [JWHT21, Figure 7.4].

• Confidence intervals are narrower for natural splines
• Less risk of “wild” behavior near edges
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Pop-up quiz #1: Splines & natural splines

Which statement is false regarding cubic and natural cubic splines?

A) A cubic spline with K knots has (K + 4) degrees of freedom.

B) A natural cubic spline with K knots forces linear behavior outside the outermost knots.

C) Enforcing the second derivative to be zero at the boundaries increases the total degrees of
freedom by 2.

D) A natural cubic spline with K knots has (K + 2) degrees of freedom.

Answer: (C) is false.
Enforcing a zero second derivative at the boundaries reduces the degrees of freedom by 2, which
explains why a natural cubic spline with K knots has (K + 2) rather than (K + 4) parameters.
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Where to place knots?

Knots may be placed in various ways:
• Uniform width: Evenly spaced across the range of X
• Uniform mass: At quantiles, so each segment has roughly equal datapoints
• Additionally, domain knowledge may help identify critical breakpoints
• Cross-validation can be used to pick an optimal set of knots

Typical practice:
• For smaller data sets, use a moderate number of knots (e.g. 3–5)
• For large data or highly nonlinear relationships, more knots might help
• Choose or refine knot placement by cross-validation or certain information criteria
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How many knots should we have?
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Figure: CV MSEs for different degrees of freedom in splines on the Wage data, modeling wage vs. age.
Left: natural cubic spline. Right: cubic spline [JWHT21, Figure 7.6].

Question: how many knots ←→ how many degrees of freedom
=⇒ Answer: use cross-validation

12 / 21



Example 2: Placing knots (uniform width vs. uniform mass)

Example
Setup: Suppose we have a hypothetical dataset with n = 12 points, X ∈ [0, 12]:

X = {0.2, 0.9, 1.1, 2.2, 5.5, 6.0, 6.2, 8.0, 8.2, 10.8, 11.9, 12.0}.

Two ways to pick knots (2 interior knots => 3 segments):

1) Uniform width: Even spacing in [0, 12].
• e.g. knots at x = 4 and x = 8.
• segments: [0, 4], (4, 8], (8, 12].

2) Uniform mass: Each segment equally gets 4 data points
• After the 4th observation, place a knot near 2.2.
• After the 8th observation, place a knot near 8.0.
• segments: [0, 2.2], (2.2, 8], (8, 12].

13 / 21



Smoothing splines: Formulation

Goal: Estimate a function g(x) that fits observed data (xi , yi) well, avoiding overfitting

We minimize a combination of (1) data fidelity and (2) a smoothness penalty:

min
g∈G

{ n∑
i=1

(
yi − g(xi)

)2

︸ ︷︷ ︸
RSS

+ λ

∫ (
g ′′(t)

)2 dt︸ ︷︷ ︸
smoothness penalty

}

• The parameter λ ≥ 0 balances data fit vs. smoothness
• λ = 0: interpolates all points (leading to a potentially wiggly function)
• λ→∞: slope is constant, i.e., a straight least squares line

• The solution turns out a natural cubic spline with knots at each xi , but shrunken
relative to a standard regression spline

In R: The function smooth.spline() (in base R) performs smoothing spline fitting
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Smoothing splines: Role of the curvature penalty

Why penalize
∫

(g ′′(t))2 dt?
• The second derivative measures how sharply g bends
• A large (g ′′)2 indicates “wavy” or erratic behavior
• Minimizing

∫
(g ′′)2 forces smaller curvature, yielding a smoother shape

Interpretation of smoothness:
• The penalty

∫
(g ′′)2 aims to control “roughness” or high-frequency wiggles

• A more wiggly g has bigger (g ′′)2, thus a larger penalty

Regression splines vs. smoothing splines:
• Regression splines: fix knots/degree and enforce derivative continuity
• Smoothing splines: solve a penalized least squares problem; knots effectively spread

out adaptively to balance data fit vs. smoothness.
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Choosing the smoothing parameter λ

Effective degrees of freedom:
• As λ increases from 0 to ∞, the solution transitions from an interpolation spline

(exactly fitting all data) to a simple straight line
• The effective degrees of freedom, dfλ, correspondingly decreases from n to 2

• Degrees of freedom = the number of free parameters
• The n parameters of smoothing spline are often "shrunk" due to penalty

• dfλ quantifies the spline’s complexity, even though we do not explicitly choose knots

Selecting λ (or dfλ):
• Typically use cross-validation

• Smoothing splines have a handy formula to compute LOOCV errors without re-fitting
• In practice:

• Pick a small grid of λ-values (or dfλ-values)
• Compute CV error and select the minimizer

If interested, see [JWHT21, Sec. 7.5.2] for technical details
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Pop-up quiz #2: Smoothing splines

Which statement is false about smoothing splines?

A) They solve a penalized least squares problem with a curvature penalty,
∫

(g ′′(t))2dt.

B) As the smoothing parameter λ→ 0, the spline interpolates all data points, possibly
becoming wiggly.

C) As λ→∞, the spline degenerates to a simple linear fit.

D) The effective degrees of freedom always remains fixed at 4 for any smoothing spline fit.

Answer: (D) is false.
The effective degrees of freedom for a smoothing spline varies between n (very wiggly, when
λ = 0) and 2 (almost a straight line, as λ→∞), not a fixed value of 4.
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R example: Fitting splines on a toy dataset

Data Setup:
set.seed(111)
x <- seq(0, 10, length.out=30)
y <- 2 + 3*sin(x) + rnorm(30, sd=0.3)
df <- data.frame(x, y)

Regression spline (cubic):
# Use ’bs()’ from ’splines’ package for B-spline basis
library(splines)

# Fit a cubic regression spline with, say, 2 internal knots
fit_spline <- lm(y ~ bs(x, degree=3, knots=c(3,7)), data=df)

# Predictions
x_new <- seq(0,10,length=200)
pred_spline <- predict(fit_spline, newdata=data.frame(x=x_new))
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R example: Fitting splines on a toy dataset (cont’d)

Natural spline (cubic by default):
# ’ns()’ builds a natural spline basis
fit_ns <- lm(y ~ ns(x, df=5), data=df)
pred_ns <- predict(fit_ns, newdata=data.frame(x=x_new))

Smoothing spline:
# ’smooth.spline()’ solves the penalized objective
fit_smooth <- smooth.spline(x, y, df=6)
pred_smooth <- predict(fit_smooth, x=x_new)$y

Note: You can then plot ŷ(x) for each model to compare

For more example codes, see [JWHT21, Sec. 7.8.1 & 7.8.2]
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Wrap-up: Takeaways

• Regression splines:
• Piecewise polynomials + continuity constraints
• Truncated power basis for an easy linear-model fit
• “Natural” splines impose linear boundary conditions to avoid erratic tails
• Choose knot placement / number of knots via cross-validation

• Smoothing splines:
• A penalized approach balancing data fit vs. curvature
• The solution is a natural cubic spline with knots at each data point
• λ→ 0 yields interpolation; λ→∞ yields a line
• Effective degrees of freedom: from n to 2
• Typically choose λ by cross-validation
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