
STA 35C: Statistical Data Science III
Lecture 22: Smoothing Splines & Principal Component Analysis

Dogyoon Song

Spring 2025, UC Davis

1 / 16

Today’s topics

• Review: Regression splines
• Formulation & basic properties
• Truncated power basis representation
• "Natural" splines
• How to place knots

• Smoothing splines
• Overview: interpolation + smoothness penalty

→ The resulting function is a natural cubic spline!
• Choosing the smoothness parameter

• Unsupervised learning & Principal component analysis
• Overview of unsupervised learning
• Principal components as directions capturing max variance

2 / 16

Quick review: Regression splines

Regression splines:
• Piecewise polynomials of degree d , joined smoothly at knots (cutpoints)

• Continuity constraints at each knot for the function and its first (d − 1) derivatives
• A degree-d spline with K knots has (d + 1) + K parameters

• Truncated power basis for degree d with knots at c1, . . . , cK :

f (x) = β0 + β1X + · · · + βdXd +
K∑

k=1
βd+k (X − ck)d

+

• These basis functions automatically ensure continuity up to (d − 1)-th derivative
• Natural splines add constraints so the spline is linear beyond the outer knots

• For a cubic spline (d = 3), this reduces DoF from (K + 4) to (K + 2)
• Placing knots

• Common schemes: uniform width vs. uniform mass (percentiles)
• Often use cross-validation for final selection

3 / 16

Smoothing splines: Formulation

Goal: Estimate a function g(x) that fits observed data (xi , yi) well, avoiding overfitting

Idea: Minimize a composite objective comprising data fidelity & smoothness penalty:

min
g∈G

{ n∑
i=1

(
yi − g(xi)

)2

︸ ︷︷ ︸
RSS; data fidelity

+ λ

∫ (
g ′′(t)

)2 dt︸ ︷︷ ︸
smoothness penalty

}

• The parameter λ ≥ 0 balances data fit vs. smoothness
• λ = 0: interpolates all points (often wiggly)
• λ → ∞: slope is constant, i.e., a straight least squares line

Result: The solution is a natural cubic spline with knots at each xi
• However, somewhat shrunken relative to a plain regression spline

In R: The function smooth.spline() (in base R) performs smoothing spline fitting
4 / 16

Smoothing splines: Curvature penalty

Why penalize
∫

(g ′′(t))2 dt?
• The penalty

∫
(g ′′)2 aims to control “roughness” or high-frequency wiggles

• The second derivative measures how sharply g bends
• A more wiggly g has bigger (g ′′)2, thus a larger penalty

• Minimizing
∫

(g ′′)2 forces smaller curvature, yielding a smoother shape

(Optional) Food for thought*: What if we instead used
∫

(g)2 or
∫

(g ′)2?
• ∫

(g)2 would penalize the “magnitude” of g
• ∫

(g ′)2 would penalize "slopes"
• cf. Homework 5, Problem 3-3*

Regression splines vs. smoothing splines:
• Regression splines: fix knots/degree and enforce derivative continuity
• Smoothing splines: solve a penalized least squares problem; knots effectively spread

out adaptively to balance data fit vs. smoothness.
5 / 16

Choosing the smoothing parameter λ

Effective degrees of freedom:
• As λ increases from 0 to ∞, the resulting regression function shifts from an

interpolation spline (exactly fitting all data) to a simple straight line
• The effective degrees of freedom, dfλ, decreases from n to 2

• Degrees of freedom = the number of free parameters
• The n parameters of smoothing spline are often "shrunk" due to penalty

• dfλ ∈ [2, n] quantifies the spline’s complexity

Selecting λ (or dfλ):
• Typically use cross-validation; LOOCV is practical thanks to a short-cut formula
• In practice:

• Pick a small grid of λ-values (or dfλ-values)
• Compute CV error and select the minimizer

• In R: We specify dfλ, and R will compute corresponding λ

If interested, see [JWHT21, Sec. 7.5.2] for more technical details
6 / 16

Smoothing splines: Illustration

Figure: Smoothing splines fit to n = 50 data points from Y = sin(X) + ϵ on [0, 2π] at various λ values.
For smaller λ, the fit nearly interpolates all points (wiggly). As λ grows larger, the fit becomes smoother,
and for very large λ, it approximates a straight line.

7 / 16

Smoothing splines: A toy example code in R

set.seed(123)
n <- 50
x <- seq(0, 2*pi, length.out = n)
y <- sin(x) + rnorm(n, sd = 0.2)

lambda_values <- c(0.001, 0.01, 0.1, 1, 5)

smooth.spline doc says:
lambda = 256^(spar - 1)
=> spar = 1 + log(lambda, base=256)
lambda_to_spar <- function(lambda) {

1 + log(lambda, base = 256)
}

fits <- lapply(lambda_values, function(lam) {
spar_val <- lambda_to_spar(lam)
smooth.spline(x, y, spar = spar_val)

})

For additional examples, see the discussion section
materials (Week 8) and [JWHT21, Sec. 7.8.1 & 7.8.2]

plot(x, y,
pch = 16, col = "gray40",
main = "",
xlab = "X", ylab = "Y",
cex.axis = 1.4,
cex.lab = 1.4)

xx <- seq(min(x), max(x),
length.out = 400)

colors <- c("red","orange",
"forestgreen",
"blue","purple")

for(i in seq_along(lambda_values)) {
sfit <- fits[[i]]
yy <- predict(sfit,

x=xx)$y
lines(xx, yy,

col=colors[i],
lwd=2)

}
8 / 16

Pop-up quiz #2: Smoothing splines

Which statement is false about smoothing splines?

A) They solve a penalized least squares problem with a curvature penalty,
∫

(g ′′(t))2dt.

B) As the smoothing parameter λ → 0, the spline interpolates all data points, possibly
becoming wiggly.

C) As λ → ∞, the spline degenerates to a simple linear fit.

D) The effective degrees of freedom always remains fixed at 4 for any smoothing spline fit.

Answer: (D) is false.
The effective degrees of freedom for a smoothing spline varies between n (very wiggly, when
λ = 0) and 2 (almost a straight line, as λ → ∞), not a fixed value of 4.

9 / 16

Regression & smoothing splines: Summary

• Regression splines:
• Piecewise polynomials + continuity constraints
• Truncated power basis for an easy linear-model fit
• “Natural” splines impose linear boundary conditions to avoid erratic tails
• Choose knot placement / number of knots via cross-validation

• Smoothing splines:
• A penalized approach balancing data fit vs. curvature
• The solution is a natural cubic spline with knots at each data point
• λ → 0 yields interpolation; λ → ∞ yields a line
• Effective degrees of freedom: from n to 2
• Typically choose λ by cross-validation

10 / 16

Unsupervised learning

Contrast with supervised learning:
• Supervised learning: we observe (X , Y), and want to learn a function f : X → Y
• Unsupervised learning: only predictors X = (X1, . . . , Xp); no response data

Goal of unsupervised learning:
• Perform exploratory analysis of X to discover patterns or structures in the data
• Examples:

- Cancer research: Identify subgroups among patients/genes using gene-expression profiles
- Online shopping: Group shoppers with similar purchase patterns, then recommend items
- Search engines: Tailor search results to individuals with similar click histories

We will study two types of unsupervised learning tasks/methods:
• Principal component analysis (PCA): Find a few directions capturing most variation

in the data
• Clustering: Identify subgroups (clusters) among observations

11 / 16

Principal component analysis (PCA): Overview

Goal: Reduce the dimension of X = (X1, . . . , Xp) from p to r ≪ p while preserving as
much variability in data as possible

Reasons for dimensionality reduction:
• Statistical efficiency: Avoid overfitting and high variance in high-dimensional spaces
• Computational benefits: Easier/faster to store and process fewer variables
• Visualization: Plotting or interpreting data in 2D or 3D
• Noise reduction: Focusing on major signals in the data

How does PCA work?
• Identifies a few orthogonal directions that capture the maximum variance in the data
• These directions are called the principal components (PCs)

12 / 16

PCA: Visual Illustration for p = 2

Figure: For any unit vector u = (u1, u2), consider the orthogonal projection of Xi onto the line spanned by
u, which is ⟨u, Xi ⟩ = u1Xi1 + u2Xi2. PCA finds the direction u that maximizes the variance of ⟨u, Xi ⟩.

13 / 16

PCA: Formulation (p = 2)

Assumption: Data is centered, i.e. E[X] = 1
n

∑n
i=1 Xi = 0

Key idea of PCA:
• Pick a direction u = (u1, u2) with ∥u∥2 = u2

1 + u2
2 = 1

• The variance of X along u is

Var(⟨u, X ⟩) = E
[
(⟨u, X⟩ − E⟨u, X ⟩)2

]
= 1

n

n∑
i=1

(
u1xi1 + u2xi2

)2
.

• 1st principal component = the direction u that maximizes this variance:

maximize 1
n

n∑
i=1

(
u · xi

)2 subject to ∥u∥ = 1

• Geometrically, this is like finding the “major axis” of an ellipsoid formed by the data
14 / 16

PCA: General formulation

For higher dimensions (p ≥ 2):
• First principal component: a unit vector u1 ∈ Rp that solves

maximize 1
n

n∑
i=1

(u1 · xi)2 subject to ∥u1∥ = 1

• Second principal component: a unit vector u2 ∈ Rp orthogonal to u1 that
maximizes the projected variance, and so on

• (Optional) Equivalently, the principal components are the eigenvectors of the
sample covariance matrix of X

• The eigenvalues indicate the variance each principal component captures

Key points:
• PCA is unsupervised (no Y)
• It finds linear combinations of predictors (features) capturing maximum variance
• The first few principal components (r ≪ p) often capture most of the total variation,

enabling dimension reduction
15 / 16

References

Gareth James, Daniela Witten, Trevor Hastie, and Robert Tibshirani.
An Introduction to Statistical Learning: with Applications in R, volume 112 of Springer Texts in
Statistics.
Springer, New York, NY, 2nd edition, 2021.

16 / 16

	Quick recap: Basis functions and regression splines
	Smoothing Splines
	Unsupervised learning
	Principal component analysis

