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Announcement

Final exam on Fri, June 6 (1:00 pm-3:00 pm) in classroom
® Be on time: The exam starts at 1:00 pm and ends at 3:00 pm sharp

® Three hand-written cheat sheets allowed: Letter-size (8.5"x11"), double-sided, brief
formulas/notes

Calculator: A simple (non-graphing) scientific calculator is allowed
® No other materials beyond the cheat sheets (no textbooks, etc.)
e SDC accommodations: Confirm scheduling to take on Thu, June 5 with AES ASAP

Preparation:
® The exam is cumulative (Lectures 1-25)
® A practice final exam and brief answer key will be provided on the course webpage
e Office hours this week:

® [nstructor: Wed, 4:30-5:30pm ; Thu, 2:30-3:00pm
¢ TA: Mon/Thu 1-2pm
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Today’s topics

Principal component analysis (PCA)

® QOverview & intuition

® Objective: dimension reduction with minimal information loss
® |Intuition: projection that retains maximum variance

® Formalism & properties

® Principal components (PCs)

PCA as a change of basis

Proportion of variance explained

Choosing number of PCs via scree plot

(Optional) Additional details (scaling, uniqueness, etc.)

e Applications of PCA
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Quick review: Unsupervised learning

Two branches of statistical learning:

® Supervised learning
® Setup/goal: We observe (X, Y) and want to learn a function f : X — Y
® Examples: regression, classification, ...

® Unsupervised learning

® Setup/goal: We observe only X (no Y) and aim to discover patterns or structures
within X
® Examples:

e PCA: find a few directions that capture most variation (=information) in the data
e Clustering: identify subgroups (clusters) among observations

Why unsupervised learning?
® \We may have data only on features X; or we want to do exploratory analysis

e Often a preliminary step before supervised tasks
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PCA: Overview & intuition

Problem Setup:
® We have data of X € RP, where p is possibly large
® \We want to reduce dimension to r < p while retaining most “information”

PCA approach:
® Project data (X) onto an r-dimensional subspace (spanned by r vectors)
® These r vectors (=PCs) are chosen to capture maximum variance in X

® Unsupervised learning: no Y is used

Outcome:
® A few linear combinations of Xi,..., X, that explain most variation

e Useful for dimension reduction, model interpretation, and data visualization
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PCA illustration 1: p=2tor=1

X; = (X1, Xp)

° o
*
n= (g, 1) (X)) = wXy + X
® ° —

Figure: For a unit vector u = (u1, u2), consider the orthogonal projection of X; onto the line spanned by u,
which is (u, Xi) = u1.Xi1 + 12 Xi2. PCA finds the direction u maximizing the variance of projection (u, X;).

2D — 1D projection:
® Each data point X; = (xj1, x72) is mapped to (u, X;) = u1 Xj1 + 2 Xi2
® PCA picks u (with |ju]] = 1) that maximizes the variance of (u, Xj), %
® Geometrically, the "major axis" of the data cloud is identified

1 (u, Xi)?
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PCA example: p=2datator=1

Example

Consider a small 2D dataset:

X ={(-2,-1), (0,0), (2,1) }.
These three points lie on the line spanned by (2, 1).

Projection: For a unit vector u = (u1, u2), the projection of X; = (xj1, xi2) onto (the line spanned by) u is
(u, Xi) = uixin + uaxi.
Key idea: PCA finds u that maximizes the variance of these projected values (u, X;).

Observe that
® |f u=(1,0), the variance in this direction is %((—2)2 +0% + 22) =

wIN Wl

® If u=(0,1), the variance in this direction is %((—1)2 +0%+ 12) =
° lfu= %(2, 1), the variance in this direction is %((—\/5)2 +0% + \/52) = 2 (the maximum).

Hence u* = 7=(2,1) is the PCA direction.
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PCA illustration 2: p=3tor=2
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Figure: Ninety observations in R3. Left: The first two PC directions span a plane that best fits the data,
minimizing total squared distance. Right: Data are “flattened” onto that 2D plane, forming their PC scores
[JWHT21, Figure 12.2].

Key idea in higher dimension:
® Find a subspace of dimension r that capture maximal variance (=minimizing residuals)
® u, is the top PC direction, u; is second, etc., each orthogonal
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PCA: Formulation (p =2, r =1)

Assumption: Data is centered, i.e.

1 n
E[X] = EZX,- =0
i=1

First principal component direction = the direction u = (u1, up) that solves

T 2 .
maximize ;Z(u -x;)° subjectto ||ul|=/uf+ui=1

i=1
® The variance of X along u is

n n

Var((u, X)) = E[((u,X) — E(u,X))z] _1 Z(u . x,-)2 _1 Z(leil + uzx,-z)2.

N—— n n
i=1 i=1

® Geometrically, the solution is the “major axis” in R? that explains the largest spread
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PCA: General formulation (p > 2, r > 1)

First PC: a unit vector u; € R” that maximizes variance, i.e.,
n

u; = argmax 1 Z(u . x,-)2

_ n
[lul|=1 i=1

Second PC: a unit vector u; € RP maximizing variance, subject to being orthogonal to uy,

n

1 2
u, = argmax — Z(v 29
[lvll=1 n i=1
(v,u1)=0
® u; L u; = the random variables Z; = (u1, X) and Z, = (u2, X) are uncorrelated

® Subsequent PCs us, ..., u, are defined analogously, each orthogonal to all preceding PCs

Interpretation:

® The k-th PC is orthogonal to all prior ones, ensuring uncorrelatedness among the PC scores

® (Optional) The PC directions correspond to the eigenvectors of the sample covariance matrix
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PCs as linear combinations (change of basis)

If ug,...,up, are PC directions, the k-th PC score for observation i is
Zik - uka Zuk,j INED

® \We can write X; as a combination of the uy basis:

p P
§ = § lk Uy
j=1 k=1

® For dimension reduction, we might keep only Z;, ..., Z; for r < p, compressing the data
(Optional):

® (Zi,...,Z,) is just a linear transformation of (Xi,...,Xp)

® |n matrix form, Z = X U, where U is the orthonormal matrix whose columns are uy, ..., u,
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PCs as linear combinations (change of basis)
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Figure: A subset of the advertising data, with the mean pop and ad budgets shown as a blue circle. Left: The
first principal component direction (green) captures the greatest data variation and defines the line that best fits all
observations (distances shown by dashed segments). Right: The plot is rotated so that this principal component
aligns with the horizontal x-axis. [JWHT21, Figure 6.15].
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Pop-up quiz #1: Basic PCA understanding

Question: Which statement about PCA is false?
A) PCA is unsupervised, using only {Xj}, not Y.
B) The first principal component is the direction in predictor space along which the
projected data has the largest variance.
C) The second principal component must be found by maximizing projected variance
with no extra constraint.
D) PCA can serve as dimension reduction by keeping only a few top PCs capturing most
variance.

Answer: (C) is false.

® For the second principal component, there is an extra requirement that it is uncorrelated
(and hence orthogonal, in geometric terms) to the first principal component.
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Pop-up quiz #2: Interpreting the first principal component

Question: Suppose you have p predictors and you compute the first principal component.
Which choice best describes how to interpret that first component?

A) It is always the average of all the predictors, so it has little to do with variance.

B) It is the unit-length direction that maximizes how spread out (variable) the data is
after projecting onto that direction.

C) It represents a decision boundary for separating classes in your dataset.

D) It is guaranteed to pass exactly through every data point if we use all observations.

Answer: (B) is correct.
® The first principal component is the direction along which the data points show the greatest
variance; it does not necessarily pass through every data point, nor does it reflect a
classification decision boundary.

14 /24



Proportion of variance explained (PVE)

Question: If we only keep r PCs, how much total variance remains?
® For centered data, total variance is
P

n n p
Var(x) = TSTIXIP = T30 = D var(x)
i=1 =1

i=1 j=1
® The variance explained by the k-th PC is

1 n
Var((ug, X)) = - Zz,zk where  zy = (ug, X;)
i=1

® The proportion of variance explained (PVE) by the k-th PC is

Si1Zi i llzuul®
>t f:l Xi? i X2
® The cumulative PVE for the first r PCs is

, S IX = Sy zwuk)? RSS
PVEy, =) PVE,=1- 0 =1-
: kz:; ‘ Zi:l HX"||2 TSS

PVE, =
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Scree plot: PVE vs. number of PCs
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Figure: A scree plot for the USArrests data. Left: proportion of variance explained by each PC. Right: cumulative
PVE [JWHT21, Figure 12.3].

Scree plot:
® Plot PVE or cumulative PVE vs. PC index k

® Often look for an “elbow” beyond which additional PCs yield minimal gains
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Scree plot: How many PCs to retain?

Trade-off:
® Smaller dimension r is easier to interpret and visualize

® |arger r retains more variance in the data

Question: How many principal components do we need?
® No universal formula for the “best” r

e Typically choose r so the cumulative PVE is “high enough,” or identify an “elbow”
in the scree plot

® Larger r retains more variance (less information loss) but can be less interpretable

In practice, use scree plot to find an "elbow" and retain the PCs on the left
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Choosing the number of PCs using scree plot example

Percentage of explained variances

1 2 3 4 5 6 7 8 9 10
Dimensions

Figure: A scree plot from mtcars dataset in R. The elbow appears to occur at the third principal component, which
suggests keeping the first three components (source: Statistics Globe).
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https://statisticsglobe.com/scree-plot-pca

(Optional) Additional PCA details

Scaling variables?

e If predictors have very different scales (e.g. height in ¢cm vs. income in $), standardizing
them to unit variance can drastically alter PCA directions

® Whether to scale depends on context: if raw scales matter, do not standardize; if you want
each feature to contribute equally, do scale

Uniqueness:
® Principal component directions are unique up to a sign (u vs. —u)
® This sign usually does not affect interpretation, so software packages pick a sign convention
automatically

Computation:
® Solve for eigenvectors/eigenvalues of the sample covariance (or correlation) matrix

® In R: prcomp(..., scale=TRUE) or princomp(...)
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PCA application in high-dimensional genomics

Example: Genomics data [NJB'08]
® 1,387 individuals from Europe, each with genotype data at 197,146 loci
® Apply PCA — reduce dimension from p =197k to 2 principal components
® Two PCs remarkably recapitulate Europe’s geography in “genetic space,” demonstrating how PCA
can drastically compress data while still capturing meaningful structure

Figure: First two principal components of genetic variation among 1,387 Europeans. Small colored points
are individuals; large dots mark country medians in PC1-PC2 space [NJB'08, OFigure 1-a]. 20/



PCA application in image compression

Example: Compressing a grayscale image via PCA
® Original image has 372 x 492 pixels, each a grayscale intensity in [0, 255]

The image is partitioned into 12 x 12 blocks, so each block is a 12 x 12 = 144-dimensional “vector’

[ ]
® There are N = 32 x %2 = 1271 such vectors (observations)
[ ]

Apply PCA with rank r € {1,3,6,16,60} for the dimension reduction

Figure: Compressing an image by PCA. Left: original image. Right: PCA rank-1 approximation. With
r =1, almost all details are lost, but the main global contrast is still visible.

1
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PCA application in image compression (cont’d)

Rank-6 PCA (r = 6) Rank-16 PCA (r = 16) Rank-60 PCA (r = 60)

Figure: PCA-based image compression. Larger r yields better reconstruction quality. )
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Wrap-up: Takeaways

Principal Component Analysis (PCA):
® Finds a few PC directions that capture maximum variance in the data
® The first few PCs often capture most of the total variation, enabling dimension reduction

e PCA is unsupervised, commonly used for exploratory analysis or as a pre-processing step

Proportion of Variance Explained (PVE):
® Quantifies how much of the total variance is retained by a chosen number r of PCs

® A scree plot of PVE vs. PC index can guide how many PCs to keep

Additional remarks:
® In R, use prcomp(...) or princomp(...)
® Predictor scaling can affect PCA

® Once you learn linear algebra & eigendecomposition, the definitions and details of PCA will
become much clearer
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