# STA 35C: Statistical Data Science III

Lecture 23: Principal Component Analysis (cont'd)

Dogyoon Song

Spring 2025, UC Davis

### **Announcement**

### Final exam on Fri, June 6 (1:00 pm-3:00 pm) in classroom

- Be on time: The exam starts at 1:00 pm and ends at 3:00 pm sharp
- Three hand-written cheat sheets allowed: Letter-size (8.5"×11"), double-sided, brief formulas/notes
- Calculator: A simple (non-graphing) scientific calculator is allowed
- No other materials beyond the cheat sheets (no textbooks, etc.)
- SDC accommodations: Confirm scheduling to take on Thu, June 5 with AES ASAP

#### **Preparation:**

- The exam is *cumulative* (Lectures 1–25)
- A practice final exam and brief answer key will be provided on the course webpage
- Office hours this week:
  - Instructor: Wed, 4:30–5:30pm; Thu, 2:30–3:00pm
  - TA: Mon/Thu 1–2pm

## Today's topics

### Principal component analysis (PCA)

- Overview & intuition
  - Objective: dimension reduction with minimal information loss
  - Intuition: projection that retains maximum variance
- Formalism & properties
  - Principal components (PCs)
  - PCA as a change of basis
  - Proportion of variance explained
  - Choosing number of PCs via scree plot
  - (Optional) Additional details (scaling, uniqueness, etc.)
- Applications of PCA

# Quick review: Unsupervised learning

### Two branches of statistical learning:

- Supervised learning
  - Setup/goal: We observe (X, Y) and want to learn a function  $f: X \to Y$
  - Examples: regression, classification, ...
- Unsupervised learning
  - ullet Setup/goal: We observe only X (no Y) and aim to discover patterns or structures within X
  - Examples:
    - PCA: find a few directions that capture most variation (=information) in the data
    - Clustering: identify subgroups (clusters) among observations

### Why unsupervised learning?

- We may have data only on features X; or we want to do exploratory analysis
- Often a preliminary step before supervised tasks

### **PCA: Overview & intuition**

### **Problem Setup:**

- We have data of  $X \in \mathbb{R}^p$ , where p is possibly large
- We want to reduce dimension to  $r \ll p$  while retaining most "information"

### **PCA** approach:

- Project data (X) onto an r-dimensional subspace (spanned by r vectors)
- These r vectors (=PCs) are chosen to capture maximum variance in X
- Unsupervised learning: no Y is used

#### **Outcome:**

- A few linear combinations of  $X_1, \ldots, X_p$  that explain most variation
- Useful for dimension reduction, model interpretation, and data visualization

### **PCA** illustration 1: p = 2 to r = 1



Figure: For a unit vector  $\mathbf{u} = (u_1, u_2)$ , consider the orthogonal projection of  $X_i$  onto the line spanned by  $\mathbf{u}$ , which is  $\langle \mathbf{u}, X_i \rangle = u_1 X_{i1} + u_2 X_{i2}$ . PCA finds the direction  $\mathbf{u}$  maximizing the variance of projection  $\langle \mathbf{u}, X_i \rangle$ .

#### $2D \rightarrow 1D$ projection:

- Each data point  $X_i = (x_{i1}, x_{i2})$  is mapped to  $\langle \mathbf{u}, X_i \rangle = u_1 X_{i1} + u_2 X_{i2}$
- PCA picks  $\mathbf{u}$  (with  $\|\mathbf{u}\| = 1$ ) that maximizes the variance of  $\langle \mathbf{u}, X_i \rangle$ ,  $\frac{1}{n} \sum_{i=1}^{n} \langle \mathbf{u}, X_i \rangle^2$
- Geometrically, the "major axis" of the data cloud is identified

### **PCA** example: p = 2 data to r = 1

### Example

Consider a small 2D dataset:

$$\mathcal{X} = \{ (-2, -1), (0, 0), (2, 1) \}.$$

These three points lie on the line spanned by (2,1).

**Projection:** For a unit vector  $\mathbf{u} = (u_1, u_2)$ , the projection of  $X_i = (x_{i1}, x_{i2})$  onto (the line spanned by)  $\mathbf{u}$  is

$$\langle \mathbf{u}, X_i \rangle = u_1 x_{i1} + u_2 x_{i2}.$$

**Key idea:** PCA finds **u** that maximizes the variance of these projected values  $\langle \mathbf{u}, X_i \rangle$ .

Observe that

- If  $\mathbf{u} = (1,0)$ , the variance in this direction is  $\frac{1}{3}((-2)^2 + 0^2 + 2^2) = \frac{8}{3}$ .
- If  $\mathbf{u} = (0,1)$ , the variance in this direction is  $\frac{1}{3}((-1)^2 + 0^2 + 1^2) = \frac{2}{3}$ .
- If  $\mathbf{u}=\frac{1}{\sqrt{5}}(2,1)$ , the variance in this direction is  $\frac{1}{3}\big((-\sqrt{5})^2+0^2+\sqrt{5}^2\big)=\frac{10}{3}$  (the maximum).

Hence  $\mathbf{u}^* = \frac{1}{\sqrt{5}}(2,1)$  is the PCA direction.

## **PCA** illustration 2: p = 3 to r = 2





Figure: Ninety observations in  $\mathbb{R}^3$ . Left: The first two PC directions span a plane that best fits the data, minimizing total squared distance. Right: Data are "flattened" onto that 2D plane, forming their PC scores [JWHT21, Figure 12.2].

#### Key idea in higher dimension:

- Find a subspace of dimension r that capture maximal variance (=minimizing residuals)
- $\mathbf{u}_1$  is the top PC direction,  $\mathbf{u}_2$  is second, etc., each orthogonal

# **PCA:** Formulation (p = 2, r = 1)

Assumption: Data is centered, i.e.

$$\mathbb{E}[X] = \frac{1}{n} \sum_{i=1}^{n} X_i = 0$$

First principal component direction = the direction  $\mathbf{u} = (u_1, u_2)$  that solves

maximize 
$$\frac{1}{n}\sum_{i=1}^n (\mathbf{u}\cdot\mathbf{x}_i)^2$$
 subject to  $\|\mathbf{u}\| = \sqrt{u_1^2 + u_2^2} = 1$ 

• The variance of X along  $\mathbf{u}$  is

$$\operatorname{Var}(\langle \mathbf{u}, X \rangle) = \mathbb{E}\Big[(\langle \mathbf{u}, \mathbf{X} \rangle - \underbrace{\mathbb{E}\langle \mathbf{u}, X \rangle}_{=0})^2\Big] = \frac{1}{n} \sum_{i=1}^n (\mathbf{u} \cdot \mathbf{x}_i)^2 = \frac{1}{n} \sum_{i=1}^n (u_1 x_{i1} + u_2 x_{i2})^2.$$

ullet Geometrically, the solution is the "major axis" in  $\mathbb{R}^2$  that explains the largest spread

# **PCA**: General formulation $(p \ge 2, r \ge 1)$

**First PC:** a unit vector  $\mathbf{u}_1 \in \mathbb{R}^p$  that maximizes variance, i.e.,

$$\mathbf{u}_1 = \underset{\|\mathbf{u}\|=1}{\operatorname{argmax}} \frac{1}{n} \sum_{i=1}^{n} (\mathbf{u} \cdot \mathbf{x}_i)^2$$

**Second PC:** a unit vector  $\mathbf{u}_2 \in \mathbb{R}^p$  maximizing variance, subject to being orthogonal to  $\mathbf{u}_1$ ,

$$\mathbf{u}_{2} = \underset{\substack{\|\mathbf{v}\|=1\\ \langle \mathbf{v}, \mathbf{u}_{1} \rangle = 0}}{\operatorname{argmax}} \frac{1}{n} \sum_{i=1}^{n} (\mathbf{v} \cdot \mathbf{x}_{i})^{2}$$

- $\mathbf{u}_1 \perp \mathbf{u}_2 \implies$  the random variables  $Z_1 = \langle \mathbf{u}_1, X \rangle$  and  $Z_2 = \langle \mathbf{u}_2, X \rangle$  are uncorrelated
- Subsequent PCs  $\mathbf{u}_3,\dots,\mathbf{u}_p$  are defined analogously, each orthogonal to all preceding PCs

#### Interpretation:

- The k-th PC is orthogonal to all prior ones, ensuring uncorrelatedness among the PC scores
- (Optional) The PC directions correspond to the eigenvectors of the sample covariance matrix

# PCs as linear combinations (change of basis)

If  $\mathbf{u}_1, \dots, \mathbf{u}_p$  are PC directions, the k-th **PC score** for observation i is

$$Z_{ik} = \langle \mathbf{u}_k, X_i \rangle = \sum_{j=1}^p u_{k,j} X_{i,j}.$$

• We can write  $X_i$  as a combination of the  $\mathbf{u}_k$  basis:

$$X_i = \sum_{j=1}^p X_{ij} \mathbf{e}_j = \sum_{k=1}^p Z_{ik} \mathbf{u}_k$$

• For dimension reduction, we might keep only  $Z_{i1},\ldots,Z_{ir}$  for  $r\ll p$ , compressing the data

### (Optional):

- $(Z_1,\ldots,Z_p)$  is just a linear transformation of  $(X_1,\ldots,X_p)$
- In matrix form, Z = X U, where U is the orthonormal matrix whose columns are  $\mathbf{u}_1, \dots, \mathbf{u}_p$

# PCs as linear combinations (change of basis)



Figure: A subset of the advertising data, with the mean pop and ad budgets shown as a blue circle. Left: The first principal component direction (green) captures the greatest data variation and defines the line that best fits all observations (distances shown by dashed segments). Right: The plot is rotated so that this principal component aligns with the horizontal x-axis. [JWHT21, Figure 6.15].

# Pop-up quiz #1: Basic PCA understanding

### **Question:** Which statement about PCA is **false**?

- A) PCA is unsupervised, using only  $\{X_j\}$ , not Y.
- B) The first principal component is the direction in predictor space along which the projected data has the largest variance.
- C) The second principal component must be found by maximizing projected variance with no extra constraint.
- D) PCA can serve as dimension reduction by keeping only a few top PCs capturing most variance.

### Answer: (C) is false.

• For the second principal component, there is an extra requirement that it is *uncorrelated* (and hence orthogonal, in geometric terms) to the first principal component.

# Pop-up quiz #2: Interpreting the first principal component

**Question:** Suppose you have p predictors and you compute the first principal component. Which choice **best describes** how to interpret that first component?

- A) It is always the average of all the predictors, so it has little to do with variance.
- B) It is the unit-length direction that maximizes how spread out (variable) the data is after projecting onto that direction.
- C) It represents a decision boundary for separating classes in your dataset.
- D) It is guaranteed to pass exactly through every data point if we use all observations.

### **Answer:** (B) is correct.

• The first principal component is the direction along which the data points show the greatest variance; it does not necessarily pass through every data point, nor does it reflect a classification decision boundary.

# Proportion of variance explained (PVE)

**Question:** If we only keep r PCs, how much total variance remains?

• For centered data, total variance is

$$Var(X) = \frac{1}{n} \sum_{i=1}^{n} \|X_i\|^2 = \frac{1}{n} \sum_{i=1}^{n} \sum_{j=1}^{p} x_{ij}^2 = \sum_{i=1}^{p} Var(X_j)$$

• The variance explained by the k-th PC is

$$\operatorname{Var}(\langle \mathbf{u}_k, X \rangle) = \frac{1}{n} \sum_{i=1}^n z_{ik}^2$$
 where  $z_{ik} = \langle \mathbf{u}_k, X_i \rangle$ 

• The **proportion of variance explained** (PVE) by the *k*-th PC is

$$PVE_{k} = \frac{\sum_{i=1}^{n} z_{ik}^{2}}{\sum_{i=1}^{n} \sum_{i=1}^{p} z_{ii}^{2}} = \frac{\sum_{i=1}^{n} \|z_{ik} \mathbf{u}_{k}\|^{2}}{\sum_{i=1}^{n} \|X_{i}\|^{2}}$$

• The **cumulative PVE** for the first *r* PCs is

$$PVE_{1:r} = \sum_{k=1}^{r} PVE_{k} = 1 - \frac{\sum_{i=1}^{n} \|X_{i} - \sum_{k=1}^{r} z_{ik} \mathbf{u}_{k}\|^{2}}{\sum_{i=1}^{n} \|X_{i}\|^{2}} = 1 - \frac{RSS}{TSS}$$

## Scree plot: PVE vs. number of PCs



Figure: A scree plot for the <u>USArrests</u> data. **Left:** proportion of variance explained by each PC. **Right:** cumulative PVE [JWHT21, Figure 12.3].

#### Scree plot:

- Plot PVE or cumulative PVE vs. PC index k
- Often look for an "elbow" beyond which additional PCs yield minimal gains

# Scree plot: How many PCs to retain?

#### Trade-off:

- Smaller dimension *r* is easier to interpret and visualize
- Larger *r* retains more variance in the data

Question: How many principal components do we need?

- No universal formula for the "best" r
- Typically choose r so the cumulative PVE is "high enough," or identify an "elbow" in the scree plot
- Larger r retains more variance (less information loss) but can be less interpretable

In practice, use scree plot to find an "elbow" and retain the PCs on the left

# Choosing the number of PCs using scree plot example



Figure: A scree plot from mtcars dataset in R. The elbow appears to occur at the third principal component, which suggests keeping the first three components (source: Statistics Globe).

# (Optional) Additional PCA details

### Scaling variables?

- If predictors have very different scales (e.g. height in cm vs. income in \$), standardizing them to unit variance can drastically alter PCA directions
- Whether to scale depends on context: if raw scales matter, do not standardize; if you want each feature to contribute equally, do scale

#### **Uniqueness:**

- Principal component directions are unique up to a sign  $(\mathbf{u} \text{ vs. } -\mathbf{u})$
- This sign usually does not affect interpretation, so software packages pick a sign convention automatically

### **Computation:**

- Solve for eigenvectors/eigenvalues of the sample covariance (or correlation) matrix
- In R: prcomp(..., scale=TRUE) or princomp(...)

# PCA application in high-dimensional genomics

### **Example:** Genomics data [NJB<sup>+</sup>08]

- 1,387 individuals from Europe, each with genotype data at 197,146 loci
- ullet Apply PCA ightarrow reduce dimension from p=197k to 2 principal components
- Two PCs remarkably recapitulate Europe's geography in "genetic space," demonstrating how PCA can drastically compress data while still capturing meaningful structure



Figure: First two principal components of genetic variation among 1,387 Europeans. Small colored points are individuals; large dots mark country medians in PC1–PC2 space [NJB+08, 0Figure 1-a].

# PCA application in image compression

#### **Example:** Compressing a grayscale image via PCA

- $\bullet$  Original image has 372  $\times$  492 pixels, each a grayscale intensity in [0, 255]
- The image is partitioned into  $12 \times 12$  blocks, so each block is a  $12 \times 12 = 144$ -dimensional "vector"
- There are  $N = \frac{372}{12} \times \frac{492}{12} = 1271$  such vectors (observations)
- Apply PCA with rank  $r \in \{1, 3, 6, 16, 60\}$  for the dimension reduction





Figure: Compressing an image by PCA. **Left:** original image. **Right:** PCA rank-1 approximation. With r = 1, almost all details are lost, but the main global contrast is still visible.

# PCA application in image compression (cont'd)



Figure: PCA-based image compression. Larger r yields better reconstruction quality.

## Wrap-up: Takeaways

### Principal Component Analysis (PCA):

- Finds a few PC directions that capture maximum variance in the data
- The first few PCs often capture most of the total variation, enabling dimension reduction
- PCA is unsupervised, commonly used for exploratory analysis or as a pre-processing step

### Proportion of Variance Explained (PVE):

- Quantifies how much of the total variance is retained by a chosen number r of PCs
- A scree plot of PVE vs. PC index can guide how many PCs to keep

#### Additional remarks:

- In R, use prcomp(...) or princomp(...)
- Predictor scaling can affect PCA
- Once you learn linear algebra & eigendecomposition, the definitions and details of PCA will become much clearer

### References



Gareth James, Daniela Witten, Trevor Hastie, and Robert Tibshirani.

An Introduction to Statistical Learning: with Applications in R, volume 112 of Springer Texts in Statistics.

Springer, New York, NY, 2nd edition, 2021.



John Novembre, Toby Johnson, Katarzyna Bryc, Zoltán Kutalik, Adam R Boyko, Adam Auton, Amit Indap, Karen S King, Sven Bergmann, Matthew R Nelson, et al.

Genes mirror geography within europe.

Nature, 456(7218):98-101, 2008.