STA 35C: Statistical Data Science III

Lecture 24: PCA (cont'd) + Clustering (k-means Clustering)

Dogyoon Song

Spring 2025, UC Davis

Announcement

Final exam on Fri, June 6 (1:00 pm-3:00 pm) in classroom

- Be on time: The exam starts at 1:00 pm and ends at 3:00 pm sharp
- Three hand-written cheat sheets allowed: Letter-size (8.5"×11"), double-sided, brief formulas/notes
- Calculator: A simple (non-graphing) scientific calculator is allowed
- No other materials beyond the cheat sheets (no textbooks, etc.)
- SDC accommodations: Confirm scheduling to take on Thu, June 5 with AES ASAP

Preparation:

- The exam is *cumulative* (Lectures 1–25)
- A practice final exam and brief answer key will be provided on the course webpage
- Office hours this week:
 - Instructor: Wed, June 4 (4:00-6:00pm, extended); no OH on Thu, June 5
 - TA: Mon, June 2 & Thu, June 5, 1-2pm

Course evaluation: Please share your feedback comments by Thu, June 5

Today's topics

Principal component analysis (PCA)

- Quick review
 - Objective: dimension reduction with minimal information loss
 - Intuition: projection that retains maximum variance
 - Proportion of variance explained & choosing number of PCs via scree plot
- Applications of PCA

Clustering

- Clustering problem
- Overview of two methods: k-means clustering & hierarchical clustering
- k-means clustering
 - Intuition
 - Algorithm
 - Illustration
 - Assessment

Quick review: PCA overview

Problem setup:

- We have data of $X \in \mathbb{R}^p$, with potentially large dimension p
- **Goal:** reduce dimension from p to $r \ll p$ while retaining most of the "information"

PCA approach:

- Project data (X) onto an r-dimensional subspace (spanned by r vectors)
- These r principal components are chosen to capture maximum variance in X
 - **First PC:** a unit vector $\mathbf{u}_1 \in \mathbb{R}^p$ maximizing variance:

$$\mathbf{u}_1 = \underset{\|\mathbf{u}\|=1}{\operatorname{argmax}} \frac{1}{n} \sum_{i=1}^{n} (\mathbf{u} \cdot \mathbf{x}_i)^2$$

- Subsequent PCs $\mathbf{u}_2, \dots, \mathbf{u}_p$ are found similarly, each orthogonal to all previous PCs

Result:

- Often the first few PCs ($r \ll p$) capture most of the variation
- This allows dimension reduction by using only (Z_{i1}, \ldots, Z_{ir}) for observation i

Quick review: PC scores, PVE, and choosing number of PCs

PC scores: PCA is a change of basis (=change of coordinate system)

• The k-th **PC score** of X_i is

$$Z_{ik} = \langle \mathbf{u}_k, X_i \rangle = \sum_{j=1}^p u_{kj} X_{ij}.$$

• These Z_{ik} values become the coordinates of X_i in the new (PC) coordinate system

Proportion of variance explained (PVE):

- Total variance: $Var(X) = \frac{1}{n} \sum_{i=1}^{n} \|X_i\|^2 = \sum_{j=1}^{p} Var(X_j) = \frac{1}{n} \sum_{i=1}^{n} \sum_{j=1}^{p} X_{ij}^2$
- Variance explained by the k-th PC: $\mathrm{Var}ig(\langle \mathbf{u}_k, X \rangleig) = \frac{1}{n} \sum_{i=1}^n Z_{ik}^2$
- $PVE_k = \frac{Var(\mathbf{u}_k \cdot X)}{Var(X)}$ and $PVE_{1:r} = \sum_{k=1}^r PVE_k$

Choosing r: Use a scree plot or the cumulative PVE to decide how many PCs to keep

Example: p = 3 data reduced to r = 1

Example

Dataset: Let $X \in \mathbb{R}^3$. Suppose we have five centered points:

$$\mathcal{X} = \{ (0,0,0), (0,-1,0), (0,1,0), (0,0,-3), (0,0,3) \}.$$

One can verify $\sum_{i} X_{i} = (0,0,0)$, so these are already mean-centered.

Step 1: Compute total variance.

$$\begin{aligned} \operatorname{Var}(X) &= \frac{1}{5} \sum_{i=1}^{5} \|X_i\|^2 = \sum_{i=1}^{5} \left(X_{i1}^2 + X_{i2}^2 + X_{i3}^2 \right) \\ &= \frac{1}{5} \left(0^2 + (-1)^2 + 1^2 + (-3)^2 + 3^2 \right) = \frac{1+1+9+9}{5} = \frac{20}{5} = 4. \end{aligned}$$

Step 2: Identify the first principal component.

A simple inspection shows the direction of greatest variance is along the z-axis:

$$\mathbf{u}_1 = (0, 0, 1).$$

Indeed, points $(0,0,\pm 3)$ have the largest spread among the three coordinates.

Example: p = 3 data reduced to r = 1

Example

Step 3: Variance along u₁ and **PVE.** Since $\mathbf{u}_1 = (0,0,1)$, the first PC score of X_i is equal to X_{i3} .

$$\operatorname{Var}(\mathbf{u}_1 \cdot X) = \frac{1}{5} \sum_{i=1}^{5} (\langle \mathbf{u}_1, X_i \rangle)^2 = \frac{1}{5} \sum_{i=1}^{5} (x_{i3})^2 = \frac{1}{5} (0^2 + 0^2 + 0^2 + (-3)^2 + 3^2) = \frac{18}{5} = 3.6.$$

Hence the proportion of variance explained by the first PC is

$$PVE_1 = \frac{3.6}{4.0} = 0.9$$
 (i.e., 90% of total variance).

Additional remarks.

- Similarly, we can verify that the second PC direction is $\mathbf{u}_2 = (0, 1, 0)$.
- Hence,

$$PVE_2 = \frac{0.4}{40} = 0.1 \implies PVE_{1:2} = PVE_1 + PVE_2 = 1.$$

That is, all information about the dataset \mathcal{X} is explained by the first two PC scores.

Choosing the number of PCs using scree plot example

Figure: A scree plot from mtcars dataset in R. The elbow appears to occur at the third principal component, which suggests keeping the first three components (source: Statistics Globe).

Trade-off:

- Smaller dimension r is easier to interpret and visualize
- Larger *r* retains more variance in the data

(Optional) Additional remarks on PCA

Scaling variables?

- If predictors have very different scales (e.g. height in cm vs. income in \$), standardizing them to unit variance can drastically alter PCA directions
- Whether to scale depends on context: if raw scales matter, do not standardize; if you want each feature to contribute equally, do scale

Uniqueness:

- Principal component directions are unique up to a sign $(\mathbf{u} \text{ vs. } -\mathbf{u})$
- This sign usually does not affect interpretation, so software packages pick a sign convention automatically

Computation:

- Solve for eigenvectors/eigenvalues of the sample covariance (or correlation) matrix
- In R: prcomp(..., scale=TRUE) or princomp(...)

PCA application in high-dimensional genomics

Example: Genomics data [NJB⁺08]

- 1,387 individuals from Europe, each with genotype data at 197,146 loci
- Apply PCA \rightarrow reduce dimension from p=197k to 2 principal components
- Two PCs remarkably recapitulate Europe's geography in "genetic space," demonstrating how PCA can drastically compress data while still capturing meaningful structure

Figure: First two principal components of genetic variation among 1,387 Europeans. Small colored points are individuals; large dots mark country medians in PC1–PC2 space [NJB+08, 0Figure 1-a].

PCA application in image compression

Example: Compressing a grayscale image via PCA

- \bullet Original image has 372 \times 492 pixels, each a grayscale intensity in [0, 255]
- The image is partitioned into 12×12 blocks, so each block is a $12 \times 12 = 144$ -dimensional "vector"
- There are $N = \frac{372}{12} \times \frac{492}{12} = 1271$ such vectors (observations)
- Apply PCA with rank $r \in \{1, 3, 6, 16, 60\}$ for the dimension reduction

Figure: Compressing an image by PCA. **Left:** original image. **Right:** PCA rank-1 approximation. With r = 1, almost all details are lost, but the main global contrast is still visible.

PCA application in image compression (cont'd)

Figure: PCA-based image compression. Larger r yields better reconstruction quality.

Summary of PCA

Principal Component Analysis (PCA):

- Finds a few PC directions that capture maximum variance in the data
- The first few PCs often capture most of the total variation, enabling dimension reduction
- PCA is unsupervised, commonly used for exploratory analysis or as a pre-processing step

Proportion of Variance Explained (PVE):

- Quantifies how much of the total variance is retained by a chosen number r of PCs
- A scree plot of PVE vs. PC index can guide how many PCs to keep

Additional remarks:

- In R, use prcomp(...) or princomp(...)
- Predictor scaling can affect PCA
- Once you learn linear algebra & eigendecomposition, the definitions and details of PCA will become much clearer

Clustering

Problem setup:

- We have a dataset $\mathcal{X} = \{X_1, \dots, X_n\}$ of p-dimensional features $X_i \in \mathbb{R}^p$
- **Goal:** Partition the observations into distinct *clusters* such that points within each cluster are "similar," and points in different clusters are "different"
 - Need a notion of (dis-)similarity to measure "similar" vs. "different"
 - This is similar to classification, but the classes are not known beforehand

Examples:

- Cancer subtyping: cluster tissue cells with similar gene-expression profiles
- Market segmentation: group customers by their profiles and purchasing patterns

Outcome:

- A few subgroups (clusters) of observations based on feature similarity
- (Conversely, we can also cluster features based on measurement similarity)

Clustering: Overview of two algorithms

There are many clustering methods, but we focus on two well-known approaches:

- K-means clustering (Today)
 - We specify a number of clusters K in advance
 - The algorithm assigns each observation to one of these K non-overlapping clusters, aiming to minimize within-cluster variation
 - Simple & well-suited for relatively spherical clusters in a feature space
- **Hierarchical clustering** (next lecture)
 - We do not specify the number of clusters upfront
 - Observations are successively merged or split to form a hierarchical tree structure (dendrogram)
 - We can then cut the tree at various levels to obtain different numbers of clusters

K-means clustering: Basic idea

Goal: Partition the data $\{X_1, \ldots, X_n\} \subset \mathbb{R}^p$ into K non-overlapping clusters

- We specify the desired number of clusters K in advance
- Partition indices $\{1, \ldots, n\}$ into C_1, \ldots, C_K with:
 - $C_1 \cup C_2 \cup \cdots \cup C_K = \{1, \ldots, n\}$: every X_i belongs to at least one of the K clusters
 - $C_k \cap C_{k'} = \emptyset$ for all $k \neq k'$; each X_i belongs to at most one cluster

Formulation:

$$\operatorname{minimize}_{C_1,\cdots,C_K} \left\{ \sum_{k=1}^K W(C_k) \right\}$$

- The quantity $W(C_k)$ measures within-cluster variation
 - We want the clusters to be "tight," so $\sum_{k=1}^{K} W(C_k)$ to be as small as possible
- K-means clustering typically uses the squared (Euclidean) distance

$$W(C_k) = \frac{1}{|C_k|} \sum_{i,i' \in C_k} ||X_i - X_{i'}||^2 = \frac{1}{|C_k|} \sum_{i,i' \in C_k} \sum_{j=1}^{p} (X_{ij} - X_{i'j})^2$$

Example: Within-cluster variation

Example

Let $\mathcal{X} = \{(-2,1), (-1,3), (2,0), (3,-2)\} \subset \mathbb{R}^2$. Let K = 2 and

$$C_1=\{1,2\},\ C_2=\{3,4\}.$$

Recall

$$W(C_k) = \frac{1}{|C_k|} \sum_{i,i' \in C} ||X_i - X_{i'}||^2.$$

For each cluster, the within-cluster variation can be computed as

$$W(C_1) = \frac{1}{2} [\|(-2,1) - (-1,3)\|^2 + \|(-1,3) - (-2,1)\|^2] = \frac{1}{2} \times (5+5) = 5,$$

$$W(C_2) = \frac{1}{2} [\|(2,0) - (3,-2)\|^2 + \|(3,-2) - (2,0)\|^2] = \frac{1}{2} \times (5+5) = 5.$$

Therefore, the K-means clustering objective value is $W(C_1) + W(C_2) = 5 + 5 = 10$.

K-means clustering: Visual illustration

Figure: A simulated data set with 150 observations in two-dimensional space. Panels show the results of applying K-means clustering with different values of $K \in \{2,3,4\}$. The color of each observation indicates the cluster to which it was assigned using the K-means clustering algorithm; note that there is no ordering of the clusters, so the cluster coloring is arbitrary. These cluster labels were not used in clustering; instead, they are the outputs of the clustering procedure [JWHT21, Figure 12.7].

K-means clustering: Algorithm

K-means clustering is a hard combinatorial problem, so we use a heuristic algorithm:

K-means clustering algorithm

- 1 Initialize: Randomly assign each of the n observations to one of K clusters
- 2 Iterate until assignments stop changing:
 - (a) **Update the centroids.** For each cluster C_k , compute the centroid

$$\bar{x}_k = \frac{1}{|C_k|} \sum_{i \in C_k} X_i.$$

- (b) **Reassign.** For each observation i, reassign it to the cluster whose centroid is closest in squared Euclidean distance
- Each iteration reduces the objective but may converge to a local optimum
- Often repeated from multiple random starts to choose the best result

Example: One iteration of K-means clustering

Example

Data: $\mathcal{X} = \{(-2,1), (-1,3), (2,0), (3,-2)\}, K = 2$. Suppose K = 2, and the the *initial* cluster assignment is

$$C_1 = \{1,4\}, \quad C_2 = \{2,3\}.$$

Step (a): Compute centroids.

$$\overline{x}_1 = \frac{1}{2}[(-2,1) + (3,-2)] = (0.5,-0.5), \quad \overline{x}_2 = \frac{1}{2}[(-1,3) + (2,0)] = (0.5,1.5).$$

Step (b): Reassign each point to the closer centroid.

• X_1 is closer to \overline{x}_2 because

$$||X_1 - \overline{x}_1||^2 = (-2.5)^2 + (1.5)^2 = 8.5 > ||X_1 - \overline{x}_2||^2 = (-2.5)^2 + (-0.5)^2 = 6.5.$$

• Similarly, we observe X_2 is closer to \overline{x}_2 , whereas X_3, X_4 are closer to \overline{x}_1 .

We get $C_1 = \{3,4\}, C_2 = \{1,2\}.$

Repeat (a) and (b) until the algorithm converges.

K-means clustering: Visual illustration of the algorithm

Figure: An example of the K-means algorithm for K = 3 over 2 iterations [JWHT21, Figure 12.8].

K-means clustering: Visual illustration of multiple runs

Figure: K-means with K=3 repeated six times on the same data, each with a different random initial assignment. Above each plot is the final objective. Multiple local optima are found; the best has objective=235.8 [JWHT21, Figure 12.9].

K-means clustering: Strengths and limitations

Strengths:

- Simple and computationally fast, especially for large data
- Often yields sensible clusterings if *K* is well-chosen
- Easy to interpret: each cluster has a centroid

Limitations:

- Must pre-specify the number of clusters K
- Can converge to a local rather than global optimum
- Assumes clusters are roughly spherical around centroids
- Sensitive to outliers and rescaling of features

Wrap-up: Takeaways

Clustering problem:

- We have feature vectors $X_i \in \mathbb{R}^p$ (no response Y)
- **Goal:** partition observations into "clusters" so that points in the same cluster are similar, and points in different clusters are dissimilar

K-means clustering:

- Fix the number of clusters K in advance
- Define non-overlapping clusters C_1, \ldots, C_K to minimize the total within-cluster variation
- Algorithm:
 - i) *Initialize* random cluster assignments
 - ii) Iteratively (a) update centroids, and (b) reassign points until convergence
- ullet Limitations: can get stuck in local optima; requires K pre-specified

Next time:

- Hierarchical clustering (no need to specify K)
- Dendrograms and various linkage criteria

References

Gareth James, Daniela Witten, Trevor Hastie, and Robert Tibshirani.

An Introduction to Statistical Learning: with Applications in R, volume 112 of Springer Texts in Statistics.

Springer, New York, NY, 2nd edition, 2021.

John Novembre, Toby Johnson, Katarzyna Bryc, Zoltán Kutalik, Adam R Boyko, Adam Auton, Amit Indap, Karen S King, Sven Bergmann, Matthew R Nelson, et al.

Genes mirror geography within europe.

Nature, 456(7218):98-101, 2008.