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Announcement

Final exam on Fri, June 6 (1:00 pm–3:00 pm) in classroom
• Be on time: The exam starts at 1:00 pm and ends at 3:00 pm sharp
• Three hand-written cheat sheets allowed: Letter-size (8.5"×11"), double-sided, brief

formulas/notes
• Calculator: A simple (non-graphing) scientific calculator is allowed
• No other materials beyond the cheat sheets (no textbooks, etc.)
• SDC accommodations: Confirm scheduling to take on Thu, June 5 with AES ASAP

Preparation:
• The exam is cumulative (Lectures 1–25)
• A practice final exam and brief answer key will be provided on the course webpage
• Office hours this week:

- Instructor: Wed, June 4 (4:00–6:00pm, extended); no OH on Thu, June 5
- TA: Mon, June 2 & Thu, June 5, 1–2pm

Course evaluation: Please share your feedback comments by Thu, June 5
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Today’s topics

Principal component analysis (PCA)
• Quick review

• Objective: dimension reduction with minimal information loss
• Intuition: projection that retains maximum variance
• Proportion of variance explained & choosing number of PCs via scree plot

• Applications of PCA

Clustering
• Clustering problem
• Overview of two methods: k-means clustering & hierarchical clustering
• k-means clustering

• Intuition
• Algorithm
• Illustration
• Assessment
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Quick review: PCA overview

Problem setup:
• We have data of X ∈ Rp, with potentially large dimension p
• Goal: reduce dimension from p to r ≪ p while retaining most of the “information”

PCA approach:
• Project data (X ) onto an r -dimensional subspace (spanned by r vectors)
• These r principal components are chosen to capture maximum variance in X

- First PC: a unit vector u1 ∈ Rp maximizing variance:

u1 = argmax
∥u∥=1

1
n

n∑
i=1

(
u · xi

)2

- Subsequent PCs u2, . . . , up are found similarly, each orthogonal to all previous PCs

Result:
• Often the first few PCs (r ≪ p) capture most of the variation
• This allows dimension reduction by using only (Zi1, . . . , Zir ) for observation i
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Quick review: PC scores, PVE, and choosing number of PCs

PC scores: PCA is a change of basis (=change of coordinate system)
• The k-th PC score of Xi is

Zik = ⟨uk , Xi⟩ =
p∑

j=1
ukj Xij .

• These Zik values become the coordinates of Xi in the new (PC) coordinate system

Proportion of variance explained (PVE):
• Total variance: Var(X ) = 1

n
∑n

i=1 ∥Xi∥2 =
∑p

j=1 Var(Xj) = 1
n

∑n
i=1

∑p
j=1 X 2

ij

• Variance explained by the k-th PC: Var
(
⟨uk , X ⟩

)
= 1

n
∑n

i=1 Z 2
ik

• PVEk =
Var

(
uk · X

)
Var(X ) and PVE1:r =

∑r
k=1 PVEk

Choosing r : Use a scree plot or the cumulative PVE to decide how many PCs to keep
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Example: p = 3 data reduced to r = 1

Example
Dataset: Let X ∈ R3. Suppose we have five centered points:

X =
{

(0, 0, 0), (0, −1, 0), (0, 1, 0), (0, 0, −3), (0, 0, 3)
}

.

One can verify
∑

i Xi = (0, 0, 0), so these are already mean-centered.
Step 1: Compute total variance.

Var(X) = 1
5

5∑
i=1

∥Xi ∥2 =
5∑

i=1

(
X 2

i1 + X 2
i2 + X 2

i3
)

= 1
5

(
02 + (−1)2 + 12 + (−3)2 + 32) = 1 + 1 + 9 + 9

5 = 20
5 = 4.

Step 2: Identify the first principal component.
A simple inspection shows the direction of greatest variance is along the z-axis:

u1 = (0, 0, 1).

Indeed, points (0, 0, ±3) have the largest spread among the three coordinates. 6 / 25



Example: p = 3 data reduced to r = 1

Example
Step 3: Variance along u1 and PVE. Since u1 = (0, 0, 1), the first PC score of Xi is equal to Xi3.

Var
(
u1 · X

)
= 1

5

5∑
i=1

(
⟨u1, Xi ⟩

)2 = 1
5

5∑
i=1

(xi3)2 = 1
5

(
02 + 02 + 02 + (−3)2 + 32) = 18

5 = 3.6.

Hence the proportion of variance explained by the first PC is

PVE1 = 3.6
4.0 = 0.9 (i.e., 90% of total variance).

Additional remarks.
• Similarly, we can verify that the second PC direction is u2 = (0, 1, 0).
• Hence,

PVE2 = 0.4
4.0 = 0.1 =⇒ PVE1:2 = PVE1 + PVE2 = 1.

That is, all information about the dataset X is explained by the first two PC scores.
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Choosing the number of PCs using scree plot example

Figure: A scree plot from mtcars dataset in R. The elbow appears to
occur at the third principal component, which suggests keeping the
first three components (source: Statistics Globe).

Trade-off:
• Smaller dimension r is easier

to interpret and visualize
• Larger r retains more

variance in the data
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(Optional) Additional remarks on PCA

Scaling variables?
• If predictors have very different scales (e.g. height in cm vs. income in $), standardizing

them to unit variance can drastically alter PCA directions
• Whether to scale depends on context: if raw scales matter, do not standardize; if you want

each feature to contribute equally, do scale

Uniqueness:
• Principal component directions are unique up to a sign (u vs. −u)
• This sign usually does not affect interpretation, so software packages pick a sign convention

automatically

Computation:
• Solve for eigenvectors/eigenvalues of the sample covariance (or correlation) matrix
• In R: prcomp(..., scale=TRUE) or princomp(...)
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PCA application in high-dimensional genomics
Example: Genomics data [NJB+08]

• 1,387 individuals from Europe, each with genotype data at 197,146 loci
• Apply PCA → reduce dimension from p =197k to 2 principal components
• Two PCs remarkably recapitulate Europe’s geography in “genetic space,” demonstrating how PCA

can drastically compress data while still capturing meaningful structure

Figure: First two principal components of genetic variation among 1,387 Europeans. Small colored points
are individuals; large dots mark country medians in PC1–PC2 space [NJB+08, 0Figure 1-a].
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PCA application in image compression

Example: Compressing a grayscale image via PCA
• Original image has 372 × 492 pixels, each a grayscale intensity in [0, 255]
• The image is partitioned into 12 × 12 blocks, so each block is a 12 × 12 = 144-dimensional “vector”
• There are N = 372

12 × 492
12 = 1271 such vectors (observations)

• Apply PCA with rank r ∈ {1, 3, 6, 16, 60} for the dimension reduction

Figure: Compressing an image by PCA. Left: original image. Right: PCA rank-1 approximation. With
r = 1, almost all details are lost, but the main global contrast is still visible.
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PCA application in image compression (cont’d)

Original Rank-1 PCA (r = 1) Rank-3 PCA (r = 3)

Rank-6 PCA (r = 6) Rank-16 PCA (r = 16) Rank-60 PCA (r = 60)

Figure: PCA-based image compression. Larger r yields better reconstruction quality.
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Summary of PCA

Principal Component Analysis (PCA):
• Finds a few PC directions that capture maximum variance in the data
• The first few PCs often capture most of the total variation, enabling dimension reduction
• PCA is unsupervised, commonly used for exploratory analysis or as a pre-processing step

Proportion of Variance Explained (PVE):
• Quantifies how much of the total variance is retained by a chosen number r of PCs
• A scree plot of PVE vs. PC index can guide how many PCs to keep

Additional remarks:
• In R, use prcomp(...) or princomp(...)
• Predictor scaling can affect PCA
• Once you learn linear algebra & eigendecomposition, the definitions and details of PCA will

become much clearer
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Clustering

Problem setup:
• We have a dataset X = {X1, . . . , Xn} of p-dimensional features Xi ∈ Rp

• Goal: Partition the observations into distinct clusters such that points within each
cluster are “similar,” and points in different clusters are “different”

- Need a notion of (dis-)similarity to measure "similar" vs. "different"
- This is similar to classification, but the classes are not known beforehand

Examples:
• Cancer subtyping : cluster tissue cells with similar gene-expression profiles
• Market segmentation: group customers by their profiles and purchasing patterns

Outcome:
• A few subgroups (clusters) of observations based on feature similarity
• (Conversely, we can also cluster features based on measurement similarity)
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Clustering: Overview of two algorithms

There are many clustering methods, but we focus on two well-known approaches:

• K-means clustering (Today)
• We specify a number of clusters K in advance
• The algorithm assigns each observation to one of these K non-overlapping

clusters, aiming to minimize within-cluster variation
• Simple & well-suited for relatively spherical clusters in a feature space

• Hierarchical clustering (next lecture)
• We do not specify the number of clusters upfront
• Observations are successively merged or split to form a hierarchical tree

structure (dendrogram)
• We can then cut the tree at various levels to obtain different numbers of clusters

15 / 25



K-means clustering: Basic idea

Goal: Partition the data {X1, . . . , Xn} ⊂ Rp into K non-overlapping clusters
• We specify the desired number of clusters K in advance
• Partition indices {1, . . . , n} into C1, . . . , CK with:

- C1 ∪ C2 ∪ · · · ∪ CK = {1, . . . , n}: every Xi belongs to at least one of the K clusters
- Ck ∩ Ck′ = ∅ for all k ̸= k ′; each Xi belongs to at most one cluster

Formulation:

minimizeC1,··· ,CK

{ K∑
k=1

W (Ck)
}

• The quantity W (Ck) measures within-cluster variation
- We want the clusters to be “tight,” so

∑K
k=1 W (Ck) to be as small as possible

• K-means clustering typically uses the squared (Euclidean) distance

W (Ck) = 1
|Ck |

∑
i,i′∈Ck

∥Xi − Xi′∥2 = 1
|Ck |

∑
i,i′∈Ck

p∑
j=1

(
Xij − Xi′j

)2
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Example: Within-cluster variation

Example
Let X = {(−2, 1), (−1, 3), (2, 0), (3, −2)} ⊂ R2. Let K = 2 and

C1 = {1, 2}, C2 = {3, 4}.

Recall
W (Ck) = 1

|Ck |
∑

i,i′∈Ck

∥Xi − Xi′∥2.

For each cluster, the within-cluster variation can be computed as

W (C1) = 1
2

[
∥(−2, 1) − (−1, 3)∥2 + ∥(−1, 3) − (−2, 1)∥2]

= 1
2 × (5 + 5) = 5,

W (C2) = 1
2

[
∥(2, 0) − (3, −2)∥2 + ∥(3, −2) − (2, 0)∥2]

= 1
2 × (5 + 5) = 5.

Therefore, the K-means clustering objective value is W (C1) + W (C2) = 5 + 5 = 10.
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K-means clustering: Visual illustration
K=2 K=3 K=4

Figure: A simulated data set with 150 observations in two-dimensional space. Panels show the results of applying
K-means clustering with different values of K ∈ {2, 3, 4}. The color of each observation indicates the cluster to
which it was assigned using the K-means clustering algorithm; note that there is no ordering of the clusters, so the
cluster coloring is arbitrary. These cluster labels were not used in clustering; instead, they are the outputs of the
clustering procedure [JWHT21, Figure 12.7]. 18 / 25



K-means clustering: Algorithm

K-means clustering is a hard combinatorial problem, so we use a heuristic algorithm:

K-means clustering algorithm
1 Initialize: Randomly assign each of the n observations to one of K clusters

2 Iterate until assignments stop changing:
(a) Update the centroids. For each cluster Ck , compute the centroid

x̄k = 1
|Ck |

∑
i∈Ck

Xi .

(b) Reassign. For each observation i , reassign it to the cluster whose centroid is closest in
squared Euclidean distance

• Each iteration reduces the objective but may converge to a local optimum
• Often repeated from multiple random starts to choose the best result
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Example: One iteration of K-means clustering

Example
Data: X =

{
(−2, 1), (−1, 3), (2, 0), (3, −2)

}
, K = 2. Suppose K = 2, and the the initial cluster

assignment is
C1 = {1, 4}, C2 = {2, 3}.

Step (a): Compute centroids.

x1 = 1
2 [(−2, 1) + (3, −2)] = (0.5, −0.5), x2 = 1

2 [(−1, 3) + (2, 0)] = (0.5, 1.5).

Step (b): Reassign each point to the closer centroid.
• X1 is closer to x2 because

∥ X1 − x1∥2 = (−2.5)2 + (1.5)2 = 8.5 > ∥ X1 − x2∥2 = (−2.5)2 + (−0.5)2 = 6.5.

• Similarly, we observe X2 is closer to x2, whereas X3, X4 are closer to x1.
We get C1 = {3, 4}, C2 = {1, 2}.

Repeat (a) and (b) until the algorithm converges.
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K-means clustering: Visual illustration of the algorithm
Data Step 1 Iteration 1, Step 2a

Iteration 1, Step 2b Iteration 2, Step 2a Final Results

Figure: An example of the K-means algorithm for K = 3 over 2 iterations [JWHT21, Figure 12.8].
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K-means clustering: Visual illustration of multiple runs
320.9 235.8 235.8

235.8 235.8 310.9

Figure: K-means with K = 3 repeated six times on the same data, each with a different random initial assignment.
Above each plot is the final objective. Multiple local optima are found; the best has objective=235.8 [JWHT21,
Figure 12.9]. 22 / 25



K-means clustering: Strengths and limitations

Strengths:
• Simple and computationally fast, especially for large data
• Often yields sensible clusterings if K is well-chosen
• Easy to interpret: each cluster has a centroid

Limitations:
• Must pre-specify the number of clusters K
• Can converge to a local rather than global optimum
• Assumes clusters are roughly spherical around centroids
• Sensitive to outliers and rescaling of features
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Wrap-up: Takeaways

Clustering problem:
• We have feature vectors Xi ∈ Rp (no response Y )
• Goal: partition observations into “clusters” so that points in the same cluster are similar,

and points in different clusters are dissimilar

K-means clustering:
• Fix the number of clusters K in advance
• Define non-overlapping clusters C1, . . . , CK to minimize the total within-cluster variation
• Algorithm:

i) Initialize random cluster assignments
ii) Iteratively (a) update centroids, and (b) reassign points until convergence

• Limitations: can get stuck in local optima; requires K pre-specified

Next time:
• Hierarchical clustering (no need to specify K )
• Dendrograms and various linkage criteria
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