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Announcement

Final exam on Fri, June 6 (1:00 pm—=3:00 pm) in Wellman Hall 26 (=classroom)
® Instructions:

® Arrive on time: The exam starts at 1:00 pm and ends at 3:00 pm sharp

® Up to three hand-written cheat sheets: Letter-size (8.5"x11"), double-sided
® Calculator: A simple (non-graphing) scientific calculator is allowed

® No other materials: No textbooks, notes, etc., beyond the cheat sheets

® SDC accommodations: Confirm your schedule with AES ASAP

® Preparation:

® Cumulative coverage: Lectures 1-25
® A practice final and brief answer key are available on the course webpage
® Office hours this week:

- Instructor: Wed, June 4 (4:00-6:00pm, extended); no OH on Thu, June 5
- TA: Mon, June 2 & Thu, June 5, 1-2pm

Homework 6: Check out adjustment and correction (Prob 1-(c))

Course evaluation: Please share your feedback comments by Thu, June 5
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https://canvas.ucdavis.edu/courses/975009/discussion_topics/1501784
https://dogyoons.github.io/teaching/sta35c/exams/practice/STA035C_Practice_final.pdf
https://dogyoons.github.io/teaching/sta35c/exams/practice/STA035C_Practice_final_sol.pdf
https://canvas.ucdavis.edu/courses/975009/discussion_topics/1501360

Today’s topics

Topics:
e Clustering (review)

® Proble setup
e K-means clustering
Hierarchical clustering
® Algorithm
® |llustration
® Assessment & comparison to K-means

Learning objectives:
® Algorithm: How each clustering methods operate

® Assessment & comparison: Strengths and limitations of each method
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Quick review: Clustering problem

Setup:

e Data: X ={Xy,..
® Goal: Partition the observations into clusters so that points within each cluster are

X} CRP

“similar,” while points in different clusters are “different”

Figure: lllustration of clustering. Given a dataset of X (Left), we want to partition the observations into K distinct

clusters (Right).
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K-means clustering: Objective and algorithm

Objective: Given K € N, partition {Xi,...,X,} C RP into non-overlapping clusters Cy, ..., Ck

that solve K
minimizeg, ... ¢, {Z W(Ck)}
k=1

® W(Cx) measures within-cluster variation, e.g., W(Ck) = 127 2 e, 1Xi — Xi 12

K-means clustering algorithm (heuristic)
1 Initialize: Randomly assign each of the n observations to one of K clusters
2 lterate until assignments stop changing:
(a) Update the centroids. For each cluster Ci, compute the centroid
1
Xk = — Xi.
= o L%
i€Cy
(b) Reassign. For each observation i, reassign it to the cluster whose centroid is closest in squared

Euclidean distance
5/19



K-means

clustering: lllustration of the algorithm iterations
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Figure: An example of the K-means with K = 3 over two iterations. Each
iteration updates centroids (colored disks) and reassigns points [JWHT21,

Figure 12.8].

Steps:
1 Initialize random cluster labels

2 lterate:

(a) Update cluster centroids
(b) Reassign points to nearest
centroid

Remarks:

® Each iteration reduces the
objective

® Final solution depends on
initialization
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K-means clustering: Local optima and multiple runs
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Figure: K-means with K = 3 repeated six times on the same data,
each with a different random initial assignment. Above each plot is the
final objective. Multiple local optima are found; the best has

objective=235.8 [JWHT21, Figure 12.9].

Key points:

® K-means can converge to a
suboptimal (local) solution

o Different initial cluster
assignments can yield
different final partitions

® Usually, re-run with multiple
random starts and pick the
best (lowest objective)
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K-means clustering: Strengths and limitations

Strengths:
® Simple and computationally fast

® Produces non-overlapping clusters with easy-to-interpret centroids

Limitations:
® Must pre-specify the number of clusters K, which a user may not know a priori
® Sensitive to initialization (may get stuck in local optimum)

® May need to re-run clustering algs multiple times and choose the best
e Still no guarantee of finding global optimum
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Hierarchical clustering: Concept

Motivation: Avoid choosing the number of clusters K in advance

® Instead, build a dendrogram that captures how data points “merge"” (or “split”) at
all levels of (dis)similarity

Agglomerative (bottom-up) approach:
1 Start with n clusters, each containing one observation
2 Repeatedly merge the two most similar clusters until only one cluster remains

3 Record the (dis)similarity at each merge to build a dendrogram

Clustering from a dendrogram:
® Once the dendrogram is built, “cut” it at a chosen height to produce a specific
number of clusters

® Advantage: A single dendrogram can yield clustering into many different K clusters
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Dendrograms & cutting for clusters

Data Dendrogram
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Figure: Left: A synthetic dataset (45 points) in 2D. Right: Its
dendrogram, cut at height 5 (dashed line) yielding three clusters
(colored). Colors are for display only, not used in clustering
[JWHT21, adapted from Figs. 12.10 & 12.11]

Reading a dendrogram:

® Vertical axis = (dis)similarity at
which merges occur

® | ower “merge height” = more
similar

® Horizontal spacing is not
meaningful for distance
Obtaining clusters:
® “Cut” at a chosen height

® The branches below that cut form
the clusters

® The method is “hierarchical” as
lower cuts nest within higher cuts10
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Interpreting a dendrogram requires care!
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Figure: An illustration of how to interpret a dendrogram with nine observations in 2D. Though points 9 and 2
appear horizontally close, they actually fuse at a higher height than 9 with {8,5,7}, so 9 is no more similar to 2 than
it is to {8,5,7} [JWHT21, Figure 12.12].

Note: Proximity along the horizontal axis does not represent similarity

® Only the height at which merges happen indicates (dis)similarity
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Constructing the dendrogram & linkage choices

Hierarchical clustering algorithm

1 Initialize: Begin with each observation in its own cluster. Compute pairwise cluster
dissimilarities (e.g., Euclidean distance).

2 Fori=nn—1,...,2:
(a) Examine all pairwise inter-cluster dissimilarities (linkage) among the i clusters and
merge the two closest clusters. Record the dissimilarity of that merge as the “height” in

the dendrogram.
(b) Recompute pairwise distances between the new cluster and all others. Repeat until one

cluster remains.

Linkage options: how to measure distance between two clusters A and B
e Complete linkage: dist(A, B) = max{||x —y| : x € A, y € B}
e Single linkage: dist(A, B) = min{||x — y|| ...}
* Average linkage: dist(A, B) = x5 Lxea Lyes X — vl
In R, hclust(..., method="complete"/"single"/"average") handles these 1210



Hierarchical clustering: Visual illustration of linkage
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Figure: An illustration of first few steps of hierarchical clustering. Top Left: each observation is its own cluster.
Top Right: clusters {5} and {7} merge first. Bottom Left: next, {6} and {1} merge. Bottom Right: now {8}

merges with the cluster {5,7}. Merges occur at heights = pairwise distances [JWHT21, Figure 12.13]. 13/19



Example: Comparing complete vs. single linkage (Part 1)

Example
Data set: Let

X={A=(-32),B=(-13), C=(1,0), D= (4,-3)} CR.
We label these four points {A, B, C, D}, and first compute all (g) = 6 pairwise distances:

|A— Bl = V5, A—C|=v20, [|A-D|=T7a,
IB—Cll=v13, |B-D| =61, |C-D|=V18.
Numerically, v/5 ~ 2.236, /20 ~ 4.472, /74 ~ 8.602, v/13 ~ 3.606, /61 ~ 7.810, /18 ~ 4.243.
Step 1: First merge. The smallest pairwise distance is
|A— B| = V5 ~ 2.236.
Hence, both complete and single linkage begin by merging {A} with {B}, forming a new cluster

U= {A,B}, sowe now have clusters U, {C}, {D}.
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Example: Comparing complete vs. single linkage (Part 2)

Example

Step 2: Second Merge. Now we have three branches: U = {A, B}, {C},{D}. We compute their
pairwise distances using complete and single linkage, respectively.

Complete linkage merges {C} with {D} next because
dist (U, {C}) = max{||A — C||, |B — C||} = max{v/20, V13} = V20 ~ 4.472,
dist(U, {D}) = max{||A - DJ|, | B — D||} = max{V/74, V61} = V74 ~ 8.602,
dist({C},{D}) =18 ~ 4.243 (smallest).

Single linkage merges {A, B} with {C} second because

dist(U,{C}) = min{||A— C|, |[B— C||} = min{~/20, V13} = V13 ~ 3.606 (smallest),
dist (U, {D}) = min{||A - DJ|, |B — D||} = min{V/74, V61} = V61 ~ 7.810,
dist ({C},{D}) = V18 ~ 4.243.

This example illustrates how different linkages can yield different merges. 15/19



Hierarchical clustering: Visual illustration of linkage

Average Linkage Complete Linkage Single Linkage

Figure: Comparison of single, average, and complete linkage on the same data. Note that single linkage can
produce long “chains,” while complete yields more balanced clusters [JWHT21, Figure 12.14].
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Hierarchical clustering: Strengths and limitations

Strengths:
® No need to specify the number of clusters in advance

® Produces a dendrogram that can be cut at different levels to obtain various
clusterings

Limitations:
® Greedy merges: once two clusters are merged, cannot “unmerge”
® Sensitive to the choice of linkage and distance metric

® Can be computationally expensive for large n
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Wrap-up: Clustering summary

Clustering;:
® Goal: Partition a dataset (no response labels) into subgroups of “similar” observations
® Unsupervised: Typically used for exploratory analysis or hypothesis generation

® No single “correct” distance or method; different choices lead to different clusterings

K-means | Hierarchical

- Partition data into K clusters - Builds a dendrogram from bottom-up

- Minimizes within-cluster variation - Cut at a certain height to obtain clusters

- Simple, computationally fast - No need to specify K in advance

- Easy-to-interpret “centroids” for each cluster - One dendrogram can yield many clusterings
- Must pre-specify K - Greedy merges rely on linkage choice

- Local search can yield suboptimal solutions - Nested clusters may be less optimal
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