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Announcement

Final exam on Fri, June 6 (1:00 pm–3:00 pm) in Wellman Hall 26 (=classroom)
• Instructions:

• Arrive on time: The exam starts at 1:00 pm and ends at 3:00 pm sharp
• Up to three hand-written cheat sheets: Letter-size (8.5"×11"), double-sided
• Calculator: A simple (non-graphing) scientific calculator is allowed
• No other materials: No textbooks, notes, etc., beyond the cheat sheets
• SDC accommodations: Confirm your schedule with AES ASAP

• Preparation:
• Cumulative coverage: Lectures 1–25
• A practice final and brief answer key are available on the course webpage; previous midterms

(+solution) and homework are also available
• Discussion section materials and homework solution are on Canvas
• Office hours:

- Instructor: Wed, June 4 (4:00–6:00pm, extended)
- TA: Thu, June 5, 1–2pm

Course evaluation: Please share your feedback comments by Thu, June 5
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https://canvas.ucdavis.edu/courses/975009/discussion_topics/1501784
https://dogyoons.github.io/teaching/sta35c/exams/practice/STA035C_Practice_final.pdf
https://dogyoons.github.io/teaching/sta35c/exams/practice/STA035C_Practice_final_sol.pdf


Today’s topics

Review of key topics:
• Statistical learning
• Regression
• Classification
• Model assessment & selection:

- Cross-validation
- Bootstrap
- Subset selection
- Regularization

• Unsupervised learning
- Principal component analysis
- Clustering

Also, see mid-course review (Lecture 12 & a part of Lecture 13)
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Statistical learning and STA 35C

• Core idea: Learn a model from training data, evaluate its performance, and refine it
- Aim for good predictions or insights on new, unseen data
- Rely on probability and statistical principles to measure uncertainty and avoid overfitting

• Learning objectives in STA 35C:
- When and how to use different supervised or unsupervised learning methods
- How to assess and interpret models (cross-validation, bootstrap, model selection)
- Our focus is on first principles, rather than advanced machine learning techniques
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Supervised vs. unsupervised learning

Supervised learning
X︸︷︷︸

predictors

→ Y︸︷︷︸
response

• Goal: Estimate f : X → Y so that y ≈ f (x)
• Why?

- Prediction: e.g., forecasting sales, predicting house prices
- Inference: identifying significant predictors, relationships among variables

• Depending on the type of Y ,
- Regression: Y is numeric
- Classification: Y is categorical

Unsupervised learning: Learn structure in X (no Y )
• Dimension reduction: Extract a small subset or combine features for compression
• Clustering: Cluster customers by purchasing behavior
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Regression: Basics

Problem setup
X︸︷︷︸

predictors

−→ Y︸︷︷︸
numeric

∈ R

Goal: Estimate f : X → Y to fit a regression line (or curve)

If we knew the distribution of (X , Y )...
• We might use Ŷ = E[Y | X ]
• In reality, we only have finite data, so we estimate from samples

Parameter estimation: Find β0, β1 that minimize

RSS = 1
n

n∑
i=1

(
yi − ŷi

)2 where ŷi = β0 + β1xi
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Regression: Key points

Prediction: ŷnew = β̂0 + β̂1xnew
• Individual outcomes may vary (noise)

Model fit:
• R2 = 1 − RSS

TSS ∈ [0, 1]: proportion of variance in Y explained by the model
• Higher R2 indicates better explanatory power
• Adding more predictors always increases R2; R2

adj penalizes for extra variables

Regression coefficient:
• Interpretation:

• β1: On average, Y changes by β1 per unit increase in X
• In multiple regression, β1 is the effect of X1 holding X2 fixed (conditional effect)

• Significance test:
• Null hypothesis H0 : β1 = 0 (no linear relationship)
• If t = β̂1

SE(β̂1) is large in magnitude, we reject H0 and conclude significance
• Depending on the model, we may observe confounding
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Classification: Basics

Problem setup
X︸︷︷︸

predictors

−→ Y︸︷︷︸
classes

∈ {0, 1}

Goal: Estimate f to define a decision boundary between classes

Key ideas:
• If we knew Pr[Y = 1 | X ], we could classify Y = 1 if Pr[Y = 1 | X ] ≥ p∗

- Decision threshold p∗ matters!
• In reality, we need to estimate Pr[Y = 1 | X ] from data, and use it
• Two approaches:

- Discriminative approach: directly model Pr[Y = 1 | X ]
- Generative approach: model Pr[X | Y ], then use Bayes’ theorem
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Classification: Discriminative vs. generative approaches

Logistic regression is a discriminative approach:

log
(Pr[Y = 1|X ]

Pr[Y = 0|X ]

)
= β0 + β1X

• Similar to linear regression, but the response is the log-odds of Y = 1
• Estimate the parameters by maximum likelihood estimation
• Prediction with a fitted model:

- Calculate p̂new = σ(β̂0 + β̂1xnew), where σ(z) = 1
1+e−z

- Predict Y = 1 if p̂new ≥ p∗

Linear discriminant analysis (LDA) is a generative approach
• Bayes’ theorem:

Pr[Y = 1 | X ] = Pr[Y = 1 & X ]
Pr[X ] = π1f1(x)

π0f0(x) + π1f1(x)
• Need to model

• πk = Pr[Y = k]: proportion of class k
• fk(x) = Pr[X = x | Y = k]: probability of X = x conditioned on class k
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Classification: Key points

Decision boundary:
• The set of x where Pr[Y = 1 | X = x ] = Pr[Y = 0 | X = x ]
• Both logistic regression and LDA yield linear decision boundary

Choice of p∗:
• The threshold p∗ ∈ [0, 1] affects "conditional probability → class prediction"

- Small p∗: more positive prediction
- Large p∗: more negative prediction

• To choose optimal p∗, we balance the two types of errors (FP vs. FN)

Confusion matrix & Receiver operating characteristic (ROC) curve:
• Confusion matrix: 2-by-2 table of all possible classification outcomes

- TP, FN, FP, TN
• ROC curve: The path of (FPR, TPR) for all p∗ ∈ [0, 1]

- Can be used to choose p∗
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Model assessment: Error metrics

Regression models: Commonly use MSE (Mean Squared Error):

MSE = 1
n

n∑
i=1

(
yi − ŷi

)2
.

• Lower MSE indicates a better fit

Classification models: Often use error rate:

Error Rate = # Misclassified
Total Sample Size

• Lower error rate indicates a better fit
• False Positives (FP) vs. False Negatives (FN) may also matter
• A confusion matrix or ROC curve can help visualize these outcomes
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Model assessment: Bias-variance tradeoff

Training vs. test error:
• We fit a model using training data to minimize training error
• We want the model to perform well on test data (small test error), which is not guaranteed

Bias-variance tradeoff:
• More flexible models tend to fit training data better, but can fail to generalize
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Figure: As model flexibility increases, training MSE
typically goes down, while test MSE may go back up
[JWHT21, Figure 2.9]

• High flexibility =⇒
low bias but potentially high variance

• Low flexibility =⇒
higher bias but lower variance

• Dashed line: irreducible error
(not explainable by X )
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Resampling methods: Cross-validation and bootstrap

Needs:
• Estimate test error using only training data
• Valid inference for flexible or complex models beyond linear regression

Cross-validation: Estimate test error from training data
• Validation set approach: Split training data into folds, hold out some for validation
• Cross-validation: Repeat across each fold

• k-fold CV, LOOCV: Advantages and drawbacks

Bootstrap: Estimate sampling distribution from a single dataset
• Resampling from the given dataset with replacement to generate synthetic datasets
• If the original dataset is representative of the underlying distribution...

• Bootstrap samples will look like i.i.d. sample from the nature
• Can construct confidence interval, etc.
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Model selection

In reality, we might have many predictors, unsure which are truly helpful

Y = β0 + β1X1 + · · · + βpXp + ϵ.

Best subset selection: Identify a relevant subset of predictors, then fit via least squares
• Best subset selection: Try all subsets of predictors, and pick the one that performs the best

• With p predictors, there are 2p possible subsets
• Compare models of different sizes carefully (recall R2 vs. R2

adj)
• Forward/backward stepwise selection: Computationally lighter alternatives

Regularization: Add a penalty term that favors “simpler” models
• Ridge: Add ℓ2 penalty

∑p
j=1 β2

j
• Ridge is stable under collinearity and has simpler closed-form solutions

• Lasso: Add ℓ1 penalty
∑p

j=1 |βj |
• Lasso can yield sparse solutions (some βj = 0)
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Hypothesis test: Basics

Single test:
• H0: "no signal" vs. Ha: "signal"
• Reject H0: "Discovery" of "signal"

H0 is true H0 is not true

Reject H0 Type-I error (FP) Correct (TP)
Not reject H0 Correct (TN) Type-II error (FN)

=⇒ Pr(Type I error) = Pr(reject a true null)
• By setting threshold α, we want to control Pr(Type I error) below α
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Multiple hypothesis testing

Setting:
• Suppose we have m predictors to test simultaneously
• Each test has a per-hypothesis Type I error rate α > 0

Problem:
• With m tests, we have m chances for false positives
• Probability of ≥ 1 false rejection ≈ 1 − (1 − α)m, which can be large as m grows

- e.g. at m = 20 and α = 0.05, we expect ≈ 1 false positive on average

How to address?
• Family-Wise Error Rate (FWER) ensures probability of any false positive is ≤ α

• Bonferroni correction, Holm’s method
• False Discovery Rate (FDR) limits the proportion of false positives among all rejections

• Benjamini-Hochberg procedure
• Review Midterm2 & homework for definition of FWER/FDR and further details
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Beyond linear models: Basis functions

Linear regression is powerful but can sometimes be restrictive
• Assumes Y ≈ β0 +

∑p
j=1 βjXj , i.e. a purely linear combination of predictors

• Real data often exhibits more complex, nonlinear relationships

Linear regression with basis functions: Transform X to construct new features
{b1(X ), . . . , bK (X )}, then fit a linear model in those features:

Y ≈ β0 + β1b1(X ) + · · · + βK bK (X )

• Polynomials: b1(X ) = X , b2(X ) = X 2, . . .

• Step functions: b1(X ) = I(c1 < X ≤ c2), b2(X ) = I(c2 < X ≤ c3), . . .

• Splines: piecewise polynomials with continuity constraints
- Best of both polynomials and step functions
- Piecewise polynomials of degree d , joined at knots (cutpoints)
- Degree-d spline: continuity constraints at each knot, up to (d − 1)-th derivatives
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Principal component analysis

Problem Setup:
• We have data of X ∈ Rp, where p is possibly large
• We want to reduce dimension to r ≪ p while retaining most “information”

PCA approach:
• Project data (X) onto an r -dimensional subspace (spanned by r vectors)
• These r vectors (=PCs) are chosen to capture maximum variance in X

• First PC: a unit vector u1 ∈ Rp that maximizes variance, i.e.,

u1 = argmax
∥u∥=1

1
n

n∑
i=1

(
u · xi

)2

• Subsequent PCs are defined analogously, each orthogonal to all preceding PCs
• Unsupervised learning: no Y is used

Proportion of variance explained (PVE) and scree plot:
• Tradeoff between keeping too few vs. too many principal components
• "Elbow" in a scree plot
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Clustering

Setup:
• Data: X = {X1, . . . , Xn} ⊂ Rp

• Goal: Partition a dataset (no response labels) into subgroups of “similar” observations
• Unsupervised: Typically used for exploratory analysis or hypothesis generation
• No single “correct” distance or method; different choices lead to different clusterings

K-means Hierarchical

- Partition data into K clusters - Builds a dendrogram from bottom-up
- Minimizes within-cluster variation - Cut at a certain height to obtain clusters

- Simple, computationally fast - No need to specify K in advance
- Easy-to-interpret “centroids” for each cluster - One dendrogram can yield many clusterings

- Must pre-specify K - Greedy merges rely on linkage choice
- Local search can yield suboptimal solutions - Nested clusters may be less optimal
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Conclusion & Best wishes

• Keep learning: Continue learning, explore more advanced topics, and stay curious
• Best of luck in your upcoming exams and in all your future endeavors!
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